Introduction to Remote Sensing
Description:
This Introduction to Remote Sensing course, from the National Information, Security & Geospatial Technologies Consortium, is part of a series of model courses on GIS, spatial technologies, and related subjects to provide students with the professional skills necessary to succeed in geospatial technology careers. This course seeks to introduce students to the fundamental concept of remote sensing of Earth’s surface using a series of lectures, readings, quizzes, application papers, examinations, and labs. The course broadly orients students to the “physical principles on which remote sensing is based, history and future trends, sensors and their characteristics, image data sources, and image classification, interpretation and analysis techniques.” The ArcGIS Desktop 10.1 software is required for this course.
Course Information:
The Introduction to Remote Sensing course can be implemented either as a stand-alone instructional unit or as an entry-level course in a geospatial program. The course is arranged into six modules with associated learning objectives and related assignments. The six modules include: Overview of Remote Sensing; Physical Foundations; Sensor Platforms, Image Processing, Basics, Band Ratios, and Transformations; Photogrammetry; Image Classification; and Accuracy Assessment.
Upon completion of the course, students will have an understanding of the basic concepts upon which remote sensing is based, how to select an appropriate data set for remote sensing, describe passive and active remote sensing systems, describe the fundamentals of photogrammetry, perform basic remote sensing workflows to solve problems, describe future trends in remote sensing, apply basic concepts, methods and uses of accuracy assessment, and understand the results of a remote sensing workflow.
Several zip files are included, which contain the documents associated with the course, including: Course Development Documents, Course Download, Lab Materials, and Lab Data.
For orientation purposes, viewers should begin with Syllabus.pdf and Course Development Documents.zip.
Course Contents:
The attached files associated with Remote Sensing course exist in a variety of formats including .docx, .doc, .tmp, pdf, .xml, .story, .py, and a wide variety of laboratory data file types. Below is a list of the files organized by zip file, with the file name and size provided in parenthesis.
Course Development Documents
- Attributions (Course_Attributions_GST105.docx 45KB)
- Course Alignment Matrix (GST 105_Course_Alignment_Matrix.doc 155KB)
- Course Submission Form (GST 105_Course_Submission_Form.doc 94KB)
- Syllabus (GST 105_Introduction to Remote Sensing Syllabus.doc 105KB)
- Lesson Materials
- (WRL1946.tmp 2.8KB)
- Lesson 1: Overview of Remote Sensing (L1_Overview_of_Remote_Sensing.docx 8.4MB)
- Lesson 2: Physical Foundations (L2_Physical_Foundations.docx 366KB)
- Lesson 3: Sensor Platforms and Image Processing Basics (L3_SensorPlatforms_Image Processing….docx 9.6MB)
- Lesson 4: Photogrammetry (L4_Photogrammetry.docx 7MB)
- Lesson 5: Image Classification (L5_Image_Classification 2.6MB)
- Lesson 6: Accuracy Assessment (L6_Accuracy_Assessment.docx 144KB)
Course Download
- SCORM Lesson Packages
- Sensor Platforms, Image Process, Basics, Band Ratios, and Transformations (Sensor Platforms, Image Process, Basics, Band Ratios, and Transformations.zip 20.8MB)
- Physical Foundations (Physical Foundations.zip 1.9MB)
- Photogrammetry (Photogrammetry.zip 11.1MB)
- Overview of Remote Sensing (Overview of Remote Sensing.zip 14.2MB)
- Image Classification (Image Classification.zip 8.4MB)
- Accuracy Assessment (Accuracy Assessment.zip 3.7MB)
- Storyline Lesson Files
- Sensor Platforms, Image Process, Basics, Band Ratios, and Transformations (Sensor Platforms, Image Process, Basics, Band Ratios, and Transformations.story 16.5MB)
- Physical Foundations (Physical Foundations.story 1.6MB)
- Photogrammetry (Photogrammetry.story 9.1MB)
- Overview of Remote Sensing (Overview of Remote Sensing.story 11.2MB)
- Image Classification (Image Classification.story 7MB)
- Accuracy Assessment (Accuracy Assessment.story 2.1MB)
Lab Materials
- GST 105: Introduction to Remote Sensing Lab Series: Lab 3.1a: Image Composite (GIS_105_Lab_Module_03.1a.pdf 1.5MB)
- GST 105: Introduction to Remote Sensing Lab Series: Lab 3.1b: Image Subset (GIS_105_Lab_Module_03.1b.pdf 1.6MB)
- GST 105: Introduction to Remote Sensing Lab Series: Lab 3.1c: Image Mosaic (GIS_105_Lab_Module_03.1c.pdf 1.3MB)
- GST 105: Introduction to Remote Sensing Lab Series: Lab 3.2: NDVI and Tasseled Cap (GIS_105_Lab_Module_03.2.pdf 1.6MB)
- GST 105: Introduction to Remote Sensing Lab Series: Lab 4: Image Rectification (GIS_105_Lab_Module_4.pdf 2MB)
- GST 105: Introduction to Remote Sensing Lab Series: Lab 5.1: Unsupervised Classification (GIS_105_Lab_Module_5.1.pdf 1.6MB)
- GST 105: Introduction to Remote Sensing Lab Series: Lab 5.2: Supervised Classification (GIS_105_Lab_Module_5.2.pdf 2.4MB)
- GST 105: Introduction to Remote Sensing Lab Series: Lab 6: Accuracy Assessment (GIS_105_Lab_Module_6.pdf 1.1MB)
Lab Data
- Lab 3
- Data
- (Bright1.img 531KB)
- (Bright1.img.aux.xml 2KB)
- (Bright1.img.xml 699 bytes)
- (Composite_TM_1_3.tfw 91 bytes)
- (Composite_TM_1_3.tif.ovr 26KB)
- DataOutput
- (NDVI_Rast_Calc_MB.img 52KB)
- (NDVI_Rast_Calc_MB.img.aux.xml 478 bytes)
- (NDVI_Rast_Calc_MB.img.xml 1KB)
- (NDVI_RC.tfw 91 bytes)
- (NDVI_RC.tif 525KB)
- (NDVI_RC.tif.aux.xml 395 bytes)
- (NDVI_RC.tif.xml 646 bytes)
- (NDVI_RC2.tfw 91 bytes)
- (NDVI_RC2.tif 525 KB)
- (NDVI_RC2.tif.aux.xml 395 bytes)
- (NDVI_RC2.tif.xml 684 bytes)
- DemoData
- (Composite_TM_123.tif 395KB)
- (Composite_TM_123.tif.aux.xml 4KB)
- (Composite_TM_123.tif.xml 800 bytes)
- (Composite_TM_457.tfw 91 bytes)
- (Composite_TM_457.tif 395KB)
- (Composite_TM_457.tif.aux.xml 4KB)
- (Composite_TM_457.tif.ovr 28KB)
- (Composite_TM_457.tif.xml 7KB)
- ImageMosaic
- Mosaic.gdb (contains 78 files in various formats, which are not listed here but can be found in the Mosaic.gdb file)
- (Mosaic_Tool.tbx 140KB)
- (Ratios_Enhancements.tbx 167KB)
- (green1.img 531KB)
- (green1.img.aux.xml 2KB)
- (green1.img.xml 696 bytes)
- ImageBasics.gdb
- (subset1.tfw 91 bytes)
- (subset1.tif 101KB)
- (subset1.tif.aux.xml 6KB)
- (subset1.tif.ovr 5KB)
- (subset2.tfw 91 bytes)
- (subset2.tif 101KB)
- (subset2.tif.aux.xml 6KB)
- (subset2.tif.ovr 5KB)
- (subset3.tfw 91 bytes)
- (subset3.tif 101KB)
- (subset3.tif.aux.xml 6KB)
- (subset3.tif.ovr 5KB)
- (subset4.tfw 91 bytes)
- (subset4.tif 101KB)
- (subset4.tif.aux.xml 6KB)
- (subset4.tif.ovr 4KB)
- (tc1.img 1.6MB)
- (tc1.img.aux.xml 5KB)
- (tc1.img.xml 7KB)
- (tc1.rrd 400kb)
- (tm_sacsub.img 833KB)
- (tm_sacsub.rrd 55KB)
- (tm_sacsub1.tfw 91bytes)
- (tm_sacsub1.tif 133KB)
- (tm_sacsub1.tif.aux.xml 25KB)
- (tm_sacsub1.tif.ovr 8KB)
- (tm_sacsub1.tif.vat.dbf 8KB)
- (tm_sacsub2.tfw 91bytes)
- (tm_sacsub2.tif 133KB)
- (tm_sacsub2.tif.aux.xml 36KB)
- (tm_sacsub2.tif.ovr 8KB)
- (tm_sacsub2.tif.vat.dbf 17KB)
- (tm_sacsub3.tfw 91 bytes)
- (tm_sacsub3.tif 133KB)
- (tm_sacsub3.tif.aux.xml 37KB)
- (tm_sacsub3.tif.ovr 10KB)
- (tm_sacsub3.tif.vat.dbf 17KB)
- (tm_sacsub4.tfw 91 bytes)
- (tm_sacsub4.tif 133KB)
- (tm_sacsub4.tif.aux.xml 38KB)
- (tm_sacsub4.tif.ovr 10KB)
- (tm_sacsub4.tif.vat.dbf 17KB)
- (tm_sacsub5.tfw 91 bytes)
- (tm_sacsub5.tif 133KB)
- (tm_sacsub5.tif.aux.xml 26KB)
- (tm_sacsub5.tif.ovr 10KB)
- (tm_sacsub5.tif.vat.dbf 8KB)
- (tm_sacsub7.tfw 91 bytes)
- (tm_sacsub7.tif 133KB)
- (tm_sacsub7.tif.aux.xml 25KB)
- (tm_sacsub7.tif.ovr 9KB)
- (tm_sacsub7.tif.vat.dbf 8KB)
- (wet1.img 531KB)
- (wet1.img.aux.xml 2KB)
- (wet1.img.xml 690 bytes)
- Scripts
- (NDVI_MapAlgebra.py 3KB)
- (Tasseled_Capv1.py 3KB)
- Data
- Lab 4
- (SAC_13.sid 51.4MB)
- (SAC_13.sid.aux.xml 5KB)
- (SAC1_CIR.img 14.5MB)
- (SAC1_CIR.img.aux.xml 6KB)
- (SAC1_CIR.rrd 4.9MB)
- Lab 5
- (Spectral_Sigs_Training.dbf 7KB)
- (Spectral_Sigs_Training.prj 463 bytes)
- (Spectral_Sigs_Training.shp 4KB)
- (Spectral_Sigs_Training.shx 284KB)
- (tm_sacsub.img 833KB)
- (tm_sacsub.img.xml 707 bytes)
- (tm_sacsub.rrd 55MB)
- (training_sigs_dendrogram.txt 5KB)
- (training_sigs.gsg 23KB)
- Lab 6
- (Accuracy_Assessment_Python.zip 1.6MB)
Comments