Biological Effect of Radiation

ACADs (08-006) Covered

1.1.4.5	1.1.8.2	1.1.8.3	1.1.8.3.1	1.1.8.3.2	1.1.8.3.3
3.3.2.1	3.3.2.2	3.3.4.4.1	3.3.4.4.2	3.3.4.4.5	3.3.4.4.6
4.10.1.1	4.10.1.2	4.10.1.3	4.10.1.4	4.10.2	4.12.1.1
4.12.1.2	4.12.1.3	4.12.1.4	4.12.2		

Keywords cosmic terrestrial internal radiation, uranium, thorium, radium, curie, becquerel, roentgen, dose, RAD, REM, x-rays, gamma, beta, alpha, fission fragments, mrad, tissue, organ, affect on cells, blood, whole body exposure, acute, chronic, genetic, body burden, time distance shielding, gonads

<u>Description</u> This module examines the affects of short and long term exposure to all types of radiation.

Supporting Material

Sources of Radiation Exposure in the US

- Natural background radiation comes from three sources:
 - Cosmic Radiation
 - Terrestrial Radiation
 - Internal Radiation

- Cosmic Radiation
 - Sun and stars send constant stream of cosmic radiation to Earth
 - Like steady drizzle of rain
 - Differences in certain variables can change the amount (or dose) of cosmic radiation that we receive.
 - Elevation
 - Atmospheric conditions
 - Earth's magnetic field

- Terrestrial Radiation
 - The Earth itself is a source of terrestrial radiation
 - Radioactive materials exist naturally in soil and rock
 - Uranium
 - Thorium
 - Radium
 - Water contains small amounts of dissolved uranium and thorium
 - All organic matter (both plant and animal) contains radioactive carbon and potassium.

- Internal Radiation
 - All animals (including people) have internal radiation
 - Comes from radioactive potassium-40 and carbon-14 inside their bodies
 - Present from birth
 - Very minor sources of exposure to others

- All living things are exposed to natural background radiation
- Exposure to man-made radiation sources differs by group:
 - 1. Members of the Public
 - 2. Occupationally Exposed Individuals (Workers)

- Members of the Public
 - Medical Sources (by far, the most significant manmade source)
 - Diagnostic x-rays
 - Nuclear medicine procedures (iodine-131, cesium-137, and others)

- Consumer Products
 - Building and road construction materials
 - Combustible fuels, including gas and coal
 - X-ray security systems
 - Televisions
 - Fluorescent lamp starters
 - Smoke detectors (americium)

- Consumer Products
 - Luminous watches (tritium)
 - Lantern mantles (thorium)
 - Tobacco (polonium-210)
 - Ophthalmic glass used in eyeglasses
 - Some ceramics

- Occupationally Exposed Individuals (Workers)
 - Industrial radiography (X-ray imaging)
 - Nuclear medicine departments
 - Radiology (medical imaging, X-rays, etc)
 - Radiation oncology (cancer treatment)
 - Nuclear power plants
 - Nuclear fuel cycle facilities
 - Production
 - Disposal
 - Government and university research laboratories

Radiation Measurement Units

- Radioactive Material Quantity
 - Curie :: the amount of radioactive material decaying at 2.22 X 10¹² atoms per minute or 3.7 X 10¹⁰ atoms per second
 - 1 ci = 3.7 X10 10 decays per second (dps)

- Becquerel :: the amount of radioactive material decaying at 1 decay per second
 - 1 ci = 3.7×10^{10} Bq
 - 1Bq = 1 dps

Radiation Measurement Units

- Biological Effects
 - Not fully described by decay rate of radioactive material
 - Additional factors must considered
 - Radiation type
 - Radiation energy

Radiation Measurement Units: Roentgen (R)

- Relates to gamma or x-ray interactions in air
- Relates to energy deposition in air
- Qty of x-ray or gamma radiation producing 1 esu of charge (positive or negative) in 1 cc (cm³) of dry air
 - esu = electrostatic unit of charge
 - 1 ionizing event = addition or removal of 1 electron = ±4.8 X10
 esu
 - $1 R = 2.08 \times 10^{9} \text{ ion pairs}$
 - 1 R = 88 erg/gram energy deposition in air
 - erg = unit of work or energy

Radiation Measurement Units: Radiation Absorbed Dose (RAD)

- Dose = Total amount of energy delivered to a specific area or organ by radiation.
- Dose rate = dose units per unit of time
- 1 RAD is an amount of any type of ionizing radiation that deposits 100 ergs/gram in tissue.
- 1 RAD = 100 ergs/gram energy deposition (tissue)
- Problem: Different types of ionizing radiation might have the same energy, but have totally different effects on tissue.

Radiation Measurement Units: Roentgen Equivalent Man (REM)

- The amount of ionizing radiation required to produce the same biological effect as one rad of highpenetration x-rays.
- Radiation dose in rem is referred to as the dose equivalent (DE)

 $DE(rem) = Dose(rad) \times QF$

- Quality Factor (QF)
 - Accounts for differences in biological effect for different types of radiation

Quality Factor

- Gamma, X-Rays, and High-Energy Beta
 - 1 rad = 1 rem
- Alpha, Proton, Neutron, and Low-Energy Beta
 - $1 \text{ rad} \neq 1 \text{ rem}$
 - 1 rem = 1 rad * QF

RADIATION	QUALITY FACTOR
GAMMA	1
X	1
BETA, E <mark>LECTRON>0.03 M</mark> eV	1
BETA, ELECTRON < 0.03 MeV	1.7
THERMAL NEUTRONS	3
FAST NEUTRONS	10
PROTONS	10
ALPHA	10
	iological Effects of 20

Different Radiation Types

- Biological effect of any radiation is related to rate at which radiation transfers energy to tissue
- Linear Energy Transfer (LET)
 - Measure of the interaction density along radiation travel path
 - Equivalent to ionization potential or stopping power of body tissue
 - Inversely proportional to radiation range
 - Short range particles like alphas have a high LET
- Most damaging types of radiation to a biological system are those with a high LET.
- High LET radiation deposits all of its energy in a short distance of travel.

Different Radiation Types

- LET increases with:
 - Increasing mass of incident radiation
 - Increasing charge of incident radiation
 - Decreasing energy of incident radiation
- In order of decreasing LET:
 - Fission fragments
 - Low mass number nuclei
 - Alpha particles
 - Protons
 - Neutrons
 - Low energy Beta, x-ray and gamma
 - High energy beta, xarayiand gamma

Relationship between LET and QF

LINEAR ENERGY TRANSFER (LET) (KeV/micron in water)	QUALITY FACTOR (QF)
3.5 or less	1
3.5 – 7.0	1 – 2
7.0 – 23	2 – 5
23 - 53	5 – 10
53 – 1 75	10 - 20

Example 1

 The total dose of alpha particles to an individual is three rad. Calculate the dose equivalent in rem using the appropriate Quality Factor (QF).

$$Dose = 3 \cdot rad$$

$$QF(\alpha) = 10$$

$$DE = Dose \times QF$$

$$DE = (3)(10)$$

$$DE = 30 \text{ rem}$$
Module 3

RADIATION	QUALITY FACTOR
GAMMA	1
X	1
BETA, ELECTRON>0.03 MeV	1
BETA, ELECTRON < 0.03 MeV	1.7
THERMAL NEUTRONS	3
FAST NEUTRONS	10
PROTONS	10
ALPHA	10
: Bipilogical Effects of	20 ₂₁

Example 2

 As measured by instruments, an individual was exposed to radiation field consisting of 5 mrad gamma, 2 mrad beta, and 5 mrad fast neutrons. Calculate the dose equivalent in rem.

$$DE(rem) = Dose(rad) \times QF$$

$$QF(\gamma) = 1$$

$$QF(\beta) = 1$$

$$QF(FN) = 10$$

$$DE = (5)(1) + 2(1) + 5(10)$$
$$= 57 mrem$$

RADIATION	
GAMMA	1
X	1
BETA, ELECTRON>0.03 MeV	1
BETA, ELECTRON < 0.03 MeV	1.7
THERMAL NEUTRONS	3
FAST NEUTRONS	10
PROTONS	10
ALPHA	10
HEAVY IONS	20

Biological Organization

- Cell basic unit of the human body
- Tissue cells with similar structure performing same function
- Organ cells with different structure (different tissues) performing similar overall function
- System group of organs performing common function
- Organism

Biological Organization: Cell

- Cell membrane
 - protects cell from external influences, such as toxins
 - -"gatekeeper"
- Cytoplasm
 - -80% water
 - Helps convert nutrients into energy
 - Location of biochemical reactions for bodily functions

- 1. nucleolus
- 2. nucleus
- 3. ribosome
- 4. vesicle
- 5. rough endoplasmic reticulum (ER)
- 6. Golgi apparatus
- 7. cytoskeleton
- 8. smooth endoplasmic reticulum
- 9. mitochondria
- 10. vacuole
- 11. cytoplasm
- 12. lysosome
- 13. centrioles within centrosome

Biological Organization: Cell

- Nucleus
 - -Contains instructions for:
 - Cellular reproduction
 - Cellular function Contained within chromosomes
- Chromosomes
 - -Strands of amino acids (deoxyribonucleic acids – DNA)
 - –Abnormal bodily function if nedamaged or malformed iological Effects of

Image source:

Wikimedia.org

(public domain)

Segment of DNA Strand

Image source:
Wikimedia.org
(public domain)

Radiation

Regional Center for uclear Education & Training

Cellular Effects of Radiation

Free radical formation

Direct radiation damage

Radical

 An atom (either neutral or charged) with unpaired electrons that wants to join with another atom to stabilize itself

Free radicals

- Radicals that have not yet bonded with other atoms
- Highly reactive atoms or chemical compounds that can alter existing state of cells
- Changes in cellular chemistry are the root causes of all the harmful effects of radiation.

- Direct Effect of Radiation on Cells
 - Ionization and excitation of intracellular water molecules produces free radicals

- Indirect Effect of Radiation on Cells
 - Subsequent interference of free radicals with cells not direct affected by radiation

- Radiolysis: production of free radicals in water
- Radiolysis by Ionization: Hydrogen Radical (H)
 - Electron absorbed
 - Hydrogen radical and hydroxyl ion formed

$$H_2O + e^- \rightarrow H' + OH^-$$

- Radiolysis by Ionization: Hydroxyl Radical (OH)
 - Electron removed from water molecule
 - Positively ionized water removes hydrogen from neutral water to form hydroxyl radical

$$H_2O - e^- \rightarrow H_2O^+$$

$$H_2O^+ + H_2O \rightarrow OH^- + H_3O^+$$
Module 3: Riplogical Effects of

- Radiolysis by Excitation:
 - Hydrogen and Hydroxyl Radicals
 - Incident electron excites water molecule, but is not absorbed
 - Excited water molecule splits into hydrogen and hydroxyl radicals

$$H_2O + e^- \to H_2O^* + e^-$$

$$H_2O^* \rightarrow H' + OH'$$
Module 3: Biological Effects of

 Most of these radicals immediately react with each other to produce harmless compounds

$$H^{\cdot} + H^{\cdot} \rightarrow H_2$$
 Hydrogen Gas
$$OH^{\cdot} + OH^{\cdot} \rightarrow H_2O_2$$
 Hydrogen Peroxide
$$H^{\cdot} + OH^{\cdot} \rightarrow H_2O$$
 Water

 However, they might react with other molecules in the cell, causing damage
Module 3: Biological Effects of

Cellular Effects of Radiation

- Cell may die
- Cell may reproduce but new cells may die
- Cell may reproduce producing abnormal cells
- Cell may repair itself and function normally

Cellular Effects of Radiation

DNA radiation damage

Module 3: Biological Effects of Radiation

Image source:
Wikimedia.org
(public domain)

Effects of Radiation by Biological Organization

- Molecular
 - Damage to enzymes, DNA etc. and interference with biological pathways
- Subcellular
 - Damage to cell membranes, nucleus, chromosomes etc.
- Cellular Inhibition of cell division, cell death, transformation to a malignant state

Effects of Radiation by Biological Organization

- Tissue, Organ
 - Disruption to central nervous system, bone marrow, intestinal tract
 - Induction of cancer
- Whole Animal
 - Death
 - Life shortening
- Populations
 - Changes in the genetic characteristics of individual members

Radiosensitivity

 Different cells within the body have different structures and functions

- Vary in their radiosensitivity
 - Susceptibility to radiation-induced damage

4 Factors Affecting Radiosensitivity

1. Cellular division rate

Rapidly dividing cells are more sensitivity to radiation damage

2. Cellular metabolism rate

Cells with high metabolism rate are more susceptible to radiation damage

3. Developmental stage

Cells in division stage are more susceptible to radiation damage

4. Blood / nourishment to cell

- Normally undernourished cells reproduce less
- Faster reproduction = more mutations

Organ / Tissue Radiation Effects

- Organ / tissue radiosensitivity influenced by 2 factors
 - Radiosensitivity of the tissue/organ cells
 - Importance to overall organism

- Most radiosensitive organs and tissues
 - Blood (tissue)
 - Blood-forming organs
 - Gonads (reproductive organs)
 - Lens of the eye
 - Skin
- Least radiosensitive organ

Organ / Tissue Radiation Effects

Blood

- One of the most radiosensitive tissues in the human body
- Normal blood cells have an already short lifespan and high metabolic rate
 - Take in toxins quickly
- Gonads (reproductive organs)
 - Mutations occurring in egg or sperm cells could result in a mutation in the offspring
 - 100 rads: temporary depletion of sperm count
 - 300 to 400 rad: function of officer ies impaired

Organ / Tissue Radiation Effects: Blood

BLOOD CELL TYPE	FUNCTION	PRODUCTION SITE	LIFETIME OF CELL	EFFECT OF SINGLE RADIATION EXPOSURE OF > 100 RADS		
Red (Erythrocytes)	Carry oxygen and nutrients to body	Bone marrow	100 days	Slight decrease in number		
Lymphocyte (type of white blood cell)	Fight infection	Lymph nodes and spleen	1 day	Highly radiosensitive; decrease in number increases with dose; decrease within 2 days after exposure; large decrease in number can result in infection		
Euthrophils (type of white blood cells)	Fight infection	Bone marrow	7 days	Highly radiosensitive; decrease in number proportional to dose; depletion results in infection and fever		
Platelets NET 130	Blood clotting	Bone marrow Module 3: Biological E	7 – 10 days	Highly radiosensitive; decrease in number increases with dose; decrease in number can result in hemorrhaging		

Regional Center for luclear Education & Training

Organ / Tissue Radiation Effects: Skin

- First tissue to exhibit noticeable radiation injury
- High radiosensitivity due to the high rate of cell division and degree of exposure
- 400 to 500 rad: Erythema (reddening)
- Higher dose: blistering and ulceration may occur
- Long term complications: scarring and skin cancer

Image source:

Wikimedia.org

(public domain)

Organ / Tissue Radiation Effects: Lens of the Eye

- May result in cataract formation (cloudiness)
- Single dose of 200-500 rad

Cumulative (spread over several months) dose of

1000 rad

Image source:
Wikimedia.org
(public domain)

Radiation Effects on Humans

- Four factors:
 - Radiation type
 - Area exposed
 - Total dose
 - Dose rate

Radiation Effects on Humans: Radiation Type

- For radiation of same type, range in tissue increases with increasing energy
- Depth of penetration is function of type of radiation
- Charged particles and neutrons will not penetrate as far as electromagnetic radiation
- Linear Energy Transfer (LET)
 - LET depends on charge, mass, and energy
 - Higher LET = higher QF = more biological damage

Radiation Effects on Humans: Portion of Body Exposed

- Whole Body Exposure
 - Irradiation of all cells, organs, and tissues
 - Symptoms depends on which organ is sensitive at the given dose level
- Partial Body Exposure
 - Damage limited to tissues and organs within exposed area
 - Very high localized doses of radiation are used to treat certain cancers without significant damage to the rest of the body

Radiation Effects on Humans: Rate of Exposure

- Biological damage decreases with decreasing dose rate
- Acute Exposure
 - High dose
 - Short exposure time
- Chronic Exposure
 - Low dose
 - Long exposure time
 - Occupational radiation exposure
 - Exposure from natural background radiation Module 3: Biological Effects of

Acute Radiation Effects: Whole Body Exposure

- Subclinical Range (0 to 100 rem)
 - No sickness occurs which requires medical attention
 - Some changes occur in the blood for doses near 100 rem
- Therapeutic Range (100 to 200 rem)
 - Nausea, vomiting, loss of appetite, and fatigue
 - Blood damage more severe
 - Redness of the skin
- Lethal Range (>200 rem)
 - Nausea and vomiting become more severe
 - Internal hemorrhaging may occur
 - Hair loss at 300 rem
 - 200 600 rem: small percentage of people will die within 30 days
 - 600 1000 rem: higher chance of death
 - >1000 rem: Certain death Module 3: Biological Effects of

Acute Radiation Effects: Whole Body Exposure

Dose (Rads*)	Effects			
25-50	First sign of physical effects (drop in white blood cell count)			
100	Threshold for vomiting (within a few hours of exposure)			
320 - 360	~ 50% die within 30 days (with minimal supportive care)			
480 - 540	~50 % die within 30 days (with supportive medical care)			
1,000	~ 100% die within 30 days			

RANGE	0 TO 100 REMS SUBCLINICAL RANGE	100 TO 1,000 REMS THERAPEUTIC RANGE			OVER 1,000 REMS LETHAL RANGE				
		100 TO 200 REMS	200 TO 600 REMS	600 TO 1,000 REMS	1,000 TO 5,000 REMS	OVER 5,000 REMS			
		CLINICAL SURVEILLANCE			THERAPY PALLIATIVE				
Incidence of vomiting	None	100 rems: 5% 200 rems: 50%	300 rems = 100%		100%				
Delay time	PL .	3 hours	2 hours	1 hour					
		20-				Control			
Leading organ	None	Hematopoietic tissue			Gastrointestinal trac	Central nervous system			
Characteristic signs	None	Moderate Leukopenia	Severe leucop hemorrhage; infe above 3		Diarrhea; fever, disturbance of electrolyte balance	Convulsions; tremor; ataxia; lethargy			
Critical period post exposure	- //	- /	4 to 6 weeks		5 to 14 days	1 to 48 hours			
Therapy	Reassurance	Reassurance; hematological surveillance	Blood transfusion; antibiotics	Consider bone marrow transplantation	Maintenance of electrolyte balance	Sedatives			
Prognosis	Excellent	Excellent	Good	Guarded	Hopeless				
Convalescent period	None	Several weeks	1 to 12 months	Long	90 to 100%				
Incidence of death	None	None	0 to 100% (variable)	80 to 100% (variable)					
Death occurs within	- 111	-	2 mc	onths	2 weeks	2 days			
Cause of death NET 130	-	- Hemorrhage; infection Module 3: Biological Effects of		Circulatory collapse	Respiratory failure 51				
Radiation									

Module 3: Biological Effects of Radiation

Module 3: Biological Effects of Radiation

Telangiectasia

- Dilation (expansion) of the blood vessels in the skin
- Some areas receive excessive blood flow, diverting blood away from other areas
- The cells that LOSE blood flow suffer from oxygen deprivation

Erythema

- Early Transient: Slight inflammation of skin due to inflamed blood vessels
- Main: more severe inflammation
- Late: Severe inflammation of skin due to damaged blood

- Erythema
 - Early Transient: Slight inflammation of skin due to inflamed blood vessels
 - Main: more severe inflammation
 - Late: Severe inflammation of skin due to damaged blood vessels

- Acute Ulceration
 - Early loss of outer skin cells (peeling)
- Dermal Atrophy
 - Thinning of the skin tissues
- Epilation (hair loss)
- Dry Desquamation
 - Keratinization (hardening) of the skin
- Moist Desquamation
 - Skin loss due to inability of damaged skin cells to reproduce
- Secondary Ulceration
 - Skin damage due to dehydration and infection resulting from severe moist desquamation

- Dermal Necrosis
 - Cell/tissue death due to insufficient blood flow

- Acute Epidermal Necrosis
 - Severe tissue loss
 - High-dose, low-energy beta irradiation

Chronic Radiation Effects: Whole Body Exposure

- Human body tolerates small doses of radiation exposure better over a long period of time.
- Human body
 - Repairs radiation damage
 - Eliminates radiation-induced byproducts
-As long as the repair or elimination rate is larger than the production rate.
- 500 rem acute dose
 - Severe radiation sickness
- 500 rem delivered at 10 rem per week
 - Little noticeable effect

Chronic Radiation Effects: Threshold Effect

 No permanent biological damage occurs unless total dose exceeds some value (threshold)

 Limit long term chronic exposures to less than threshold values to protect against permanent damage

Chronic Radiation Effects: Tissue Damage and Repair

- Body continuously attempts to repair damage as it occurs
- If damage too severe
 - Repair mechanisms become strained
 - Aging effects are increased
- Continued exposure shortens average life span
- May result in cancer
 - Genetic mutation of cells
 - Leukemia: Inability to produce white blood cells normally

Genetic Effects of Radiation

- Only seen in offspring of exposed workers
- Changes to genetic information in reproductive cells due to damaged DNA structure
- May be spontaneous changes due to background radiation

Somatic Effects of Radiation

- Occur in the exposed person
 - Blood changes
 - Skin reddening (erythema)
- Depends on:
 - Total Dose
 - Dose Rate
 - Region Exposed
 - Body % Exposed

Internal Radiation Exposure

- 4 ways radionuclides can enter the body:
 - Inhalation
 - Swallowing
 - Absorption
 - Through Cuts

Critical or Target Organ Concept: Swallowing and Inhalation of Radionuclides

- When swallowed, radionuclides pass through normal digestion processes.
- When inhaled, radionuclides enter the lungs.
- If soluble, transmitted through blood stream
- In the blood stream, it travels through out the body.
- Some organs have an affinity to specific elements radioactive or not.

Critical or Target Organ Concept

Example:

- Dial painters contract bone cancer after years of "pointing" the radium dipped brush with their tongues.
- Radium falls in same periodic table grouping as Calcium
 - Replaces Calcium in bone.
- The target organ for Radium is bone.

Image source:Image source:Wikimedia.orgWikimedia.org

(public domain) Module 3: Biological Effects (public domain) Radiation

Critical or Target Organ Concept

- Radium Bone
- Strontium Bone
- Cobalt whole body
- Cesium large intestine
- Iodine Thyroid

Body Burden

 Amount of internally-deposited radioactivity causing maximum permissible dose to any organ.

Protection from External Radioactivity

- Time minimize time exposed
- Distance Increase distance from source
- Shielding Increase shielding

Protection from Internal Radioactivity

- Administratively controlled: PREVENTION
 - Respirators
 - No eating / drinking in contaminated areas
 - No open wounds

