ENRG 54 - Introduction to Lighting Systems and Controls

COURSE DESCRIPTION: Fundamentals of lighting systems and controls for energy auditors. Concepts of lighting, terminology, measurement tools, identifying energy efficiency opportunities, codes, standards.

30 Hours (20 lecture, 10 lab)

LEARNING OUTCOMES:

- Summarize terminology, physics and principles of lighting
- Identify and compare various types of lighting systems, including field identification and interpretation of nameplate data
- Measure illuminance and lighting intensity
- Describe the theory and operations of various lighting control systems
- Evaluate energy use by various types of lighting systems and identify opportunities for energy efficiency measures
- Calculate energy savings of energy efficiency measures and estimate their financial impact
- Apply relevant local, state and national codes, standards and regulations relevant to lighting system recommendations

COURSE TOPICS:

- I. Introduction to fundamentals of lighting
 - A. Lighting terminology
 - 1. Luminous flux
 - 2. Illuminance
 - 3. Reflectance
 - 4. Power
 - 5. Efficacy
 - 6. Lighting power density
 - 7. Lamp life
 - 8. Lumen depreciation
 - 9. Correlated color temperature
 - 10. Color rendering index (CRI)
 - 11. Ballast factor
 - B. Physics and principles of lighting
 - 1. Spectral power distribution
 - 2. Inverse square law
 - C. Units of measurement
 - 1. Lumen
 - 2. Foot-candle
 - 3. Power (wattage)
 - 4. kWh
 - D. Vision and colors
 - E. Ambient, directional and task lighting
 - F. Over-and under-illuminance
- II. Lighting systems
 - A. Components
 - 1. Luminaire
 - 2. Lamp
 - 3. Ballast
 - 4. Reflector
 - 5. Diffuser, lens or louver

- B. Types of lamps
 - 1. Incandescent
 - 2. Halogen
 - 3. Fluorescent
 - 4. High intensity discharge
 - a. Metal halide
 - b. Mercury vapor
 - c. High pressure sodium
 - d. Low pressure sodium
 - 5. Induction lamps
 - 6. Light emitting diodes (LED)
 - 7. Neon
- C. Ballasts
 - 1. Electro-magnetic (magnetic) ballast
 - 2. Electronic ballast
 - 3. Ballast factor
- D. Lamp comparison matrix
- E. Types of lighting luminaires and intensities
- F. Energy efficiency measures (EEMs)
 - 1. Lamp replacement
 - 2. Ballast replacement
- III. Lighting controls
 - A. Basic concepts of effectiveness of lighting control
 - B. Types and appropriate applications of lighting controls
 - 1. Manual switches
 - 2. Schedule controls or sweeps (building automation systems)
 - 3. Timers and time clocks
 - 4. Infrared and ultrasonic occupancy sensors
 - 5. Manual dimmers
 - 6. Daylight controls or photo sensors
 - 7. Bi-level switching
 - C. Lighting control equations
 - D. Energy efficiency measures (EEMs)
- IV. Additional EEMs
 - A. De-lamping
 - B. Scotopic lighting
 - C. Task and ambient light levels
 - D. Circadian rhythms
- V. Lighting measurements
 - A. Tools
 - 1. Flicker checker
 - 2. Illuminance meter
 - 3. Luminance meter
 - 4. Lighting measurement devices
 - 5. Spectrophotometer
 - 6. Goniophotometer
 - 7. Circuit tracer
 - B. Data loggers and applications
 - 1. Occupancy
 - 2. Hours of use
- VI. Lighting calculations
 - A. Equation and method of calculating lumens (zonal cavity formula)
 - B. Equation and method of calculating energy savings

- C. Method of calculating skylight energy savings
- VII. Lighting standards, codes and regulations
 - A. Underwriters' Laboratory (UL)
 - B. Uniform Building Code (UBC)
 - C. Americans with Disabilities Act (ADA)
 - D. Title 24 applications
- VIII. O&M (operations and maintenance) measures to assure optimal performance

TYPES OF ASSIGNMENTS:

- I. In-class
 - A. Class discussions and demonstrations
 - B. Perform energy usage and energy savings calculations from assigned problem sets
 - C. Hands-on tool and meter use and interpretations
 - D. Field trips such as visiting the Pacific Energy Center lighting lab, walk-throughs of various campus facilities to identify lighting types
 - E. Small group projects such as oral presentation of findings from field trip site visits
- II. Out-of-class
 - A. Readings from texts, websites and instructor handouts
 - B. Calculations of energy use and energy savings from assigned problem sets
 - C. Research and prepare brief (1-2 page) report comparing strengths and weaknesses of different lamp types
 - D. Brief written paper (2-3 pages) on topics such as appropriate applications for various lighting types

TEXTBOOKS & RESOURCES:

- Instructor handouts on such topics as comparison of qualities of various lamp types
- Lighting wattage tables