l ‘ WORKREADY @
D@ ELECTRONICS 166 dewhiy

Programmable Logic Devices: Stage B

Acknowledgements: Developed by Bassam Matar, Faculty at Chandler-Gilbert Community College,
Chandler, Arizona.

Lab Summary: This lab continues the lab completed in Lab A and presents design entry, simulation, and
prototyping with tools that are provided by Altera for this purpose. We will show how a complete NOT/NEG,
ADD/OR, and ALU can be directly entered into Quartus® Il for synthesis, post synthesis simulation, timing
analysis, and device programming. We will show the process of creating a device or symbol for each of the
circuits. You will be using this lab as the basis for the two labs in the WRE Embedded Controller Module.

Lab Goal: The goal of this lab is to understand how to create an Arithmetic Logic Unit circuit and determine
its truth table.

Learning Objectives

1. Create, compile, and simulate the first component of the Arithmetic Logic Unit (ALU), NEG/NOT circuit and

device in Quartus® II.
2. Create, compile, and simulate the second component of the ALU, ADD/OR circuit and device in Quartus® I1.
3. Create, compile, and simulate the ALU circuit and device in Quartus® I1.
4. Program the design of the ALU on a CPLD test board to determine its truth table.

Grading Criteria: Your grade will be determined by your instructor.

Time Required: 6 -7 hours

Special Safety Requirements

Static electricity can damage the CPLD device used in this lab. Use appropriate ESD methods to protect the
devices. Be sure to wear a grounded wrist-strap at all times while handling the electronic components in this
circuit. The wrist strap need not be worn after the circuit construction is complete.

No serious hazards are involved in this laboratory experiment, but be careful to connect the components with
the proper polarity to avoid damage.

Lab Preparation
e Read the WRE PLD Narrative Module.
e Read this document completely before you start on this experiment.

NOTE: This lab uses the information provided in the Introduction of Lab A. You will be referred to that
section to review the needed information as required.

lab activity @
Equipment and Materials

Each team of students will need the test equipment, tools, and parts specified below. Students should work in
teams of two.

Test Equipment and Power Supplies Quantity
The following items from the UP2 Educational Kit: 1
e Altera UP-2 circuit board with ByteBlaster Download Cable
e Quartus® Il Web Edition software
e AC adapter, minimum output: 7 VDC, 250 mA DC

ESD Anti-static Wrist Strap 1
#22 Solid-core wire As needed
Wire Strippers 1

Additional References:

1. Digital Design and Implementation with Field Programmable Devices textbook found with UP2 educational
kit.

2. UP2 educational kit data sheet found on Altera web site: www.altera.com

INTRODUCTION

In stage A, we built combinational circuits of increasing complexity. In stage B, we will continue this to its
conclusion - the Arithmetic Logical Unit (ALU). An ALU is a combinational logic circuit. It has two data
inputs, each of which will be a 4-bit binary string. These are the operands. The ALU generates its output by
operating on these operands with some arithmetic or logical operation. The actual operation is selected by a set
of control signals which form the remaining inputs to the ALU. The central thing that a microprocessor does is
to deliver the correct two binary operands to the results in the appropriate memory location.

In a microprocessor, we obviously must have circuits that somehow translate the commands provided to the
microprocessor by the user into the control signals fed into the ALU. These are the instruction decode circuits.
This often is done by storing the ALU control signals in a memory. The user's command then contains the
address of the memory location where the appropriate controls are found. Additionally, in a real system, we
often need to store the result generated by the ALU into some specified memory location. Therefore, we need
circuits that take a binary bit string and use it to activate only one output line; the line addressed is the binary
input. Such circuits are one type of decoder.

The ALU is used to process data by performing binary addition, subtraction, AND's, OR's, one's and two's
complements, etc. A typical ALU has two data inputs (in our case, each 4-bit wide), some assorted control
inputs that tell the ALU what type of operation to perform, and an output (again 4-bit wide). There is also often
a carry input, a carry output, and sometimes outputs that tell if the 4-bit output is zero, etc. The inputs and
outputs of an ALU are only limited by design considerations (such as size, speed, and expense) and by what the
designer thinks might be useful for instructions in the microprocessor. In our case, we will try to keep the
design relatively simple. We will use the ALU we build here in the microprocessor we build in the embedded
controller module.

Here is a breakdown of the ALU4 Hierarchy.

=573 compilation Report
& [E Legal Notice
&S Flow Summary
B Flow Settings
&S Flow Elapsed Time
&8 [E Flow Log
-1-&F 3 Analysis & Synthesis
&hl Analysis & Synthesis Sumn
+ &[] Settings
Sy Hierarchy
%@ Analysis & Synthesis Reso
%}c:h Analysis & Synthesis Equa
B Analysis & Synthesis Files
%@ Analysis & Synthesis Reso
& L) Analysis & Synthesis Mess

Hierarchy

% Compilation Hierarchy

-2 ALU4

—|-- 2 Add_OR:inst

2 74157:inst

W 74157005t T

EDF

—J--abi 74738 3:inst 1

TDF

0 74283:5ub

EDF
—|-- 3 Meg_Motiinst1

= INC4:inst

EDF

2 Half_Adder:inst

2 Half_Adder:inst1

2 Half_Adder:inst2

2 Half_Adder:inst3

lab activity : i

In the lab, we will first build, compile, and test the NEG/NOT circuit in Altera. The next step will be to build,
compile, and test the ADD/OR circuit. When we have both of these complete, we will combine them to make
the ALU. Finally, we will program the target PLD and determine the truth table. In order to build these

circuits’ we must first understand how they work together.

Building the NEG/NOT Circuit

We will start by making the two’s complement circuit (shown here) a little more useful.

—

insfl M4

i A5 VD

- A N

" a1 ¥l

:H:il 'El‘l:l 'i‘rl'l:l [

insts oI COoUT
in=t

P—

in=fs

lab activity : i

Making the following changes can make this circuit better for our purposes:

. OR

. N I S INGE

i (SN . R _mfju SRR
QUTPUT

QUTPLIT

Y3
Y2
Y1
Y0

S ;xﬁé”””;.::::: AZ Y2
._;)D . A1 Y1 QUTPUT
A2 C >t ——— 7 A0 Yo =L

iinst2

Cout

) 00Dt

o CINCOUT QUTPUT
. KOR . | inst

A o

7
iinst3

- KOR

ZZZZZZZZZZZZZZZZZZZZZZZZZZ._'A)
Z;AO — BT i

VTG 7
" iinst4

SRR R
Ll PASS —
CNEGINST =17 : /

iin 5 Ciinst17

Now there is a single 4-bit wide data input and there are two control inputs that tell us what we can do with the
inputs. If the PASS control input is high, each exclusive-or (XOR) gate acts like an inverter on A0, Al, A2, or
A3. If NEG/NOT is high, the result is a one's complement operation. If NEG/NOT is low, the result is a two's
complement operation. The pin is called NEG/NOT because if the pin is 0, a negate operation is performed
(negate is another name for two's complement), but if itis a 1, a NOT is performed (one's complement). There
are thus two ways to look at the pin, as NEG or as NOT. Both are indicated in NEG/NOT. If PASS is low, the
exclusive OR gates have their output equal to their other input, and no incrementing is done. We will verify this
by checking the truth table of the exclusive-OR gate. It is one of the exclusive-OR's most useful properties.
This is summarized in the following function table:

NEG/NOT PASS FUNCTION
0 0 PASS-THROUGH
0 1 TWO'S COMPLEMENT
1 0 PASS-THROUGH
1 1 ONE'S COMPLEMENT

lab activity : i

The NEG/NOT circuit is an extremely simple version of an ALU, so simple that no one would actually call it an
ALU. Yet, it will do either an arithmetic operation, the negate, or a logical operation, the NOTing of 4 bits.
Which operation is to be performed is selected by a user provided control signal. An ALU is a circuit that is
supposed to perform many different functions as inputs.

Build the ADD/OR Circuit

However, for a true ALU we would like to perform more functions than just the three given above. In
particular, we would like to be able to do an addition and an OR of two four-bit numbers. We already have
everything we need to do this. We now take our input data and feed it to two different circuits. One is our
FULLADDER-4 while the other is a set of OR gates. The OR gates have two input data streams. We then use
a MUX to choose which of the two resulting outputs: the sum or the OR, is to be connected to the output of our
overall circuit. This is an excellent example of how multiplexers are used in digital streams. Our circuit is:

[Fie (& wew From Acsoemerts Frocesseg Tods Wedow te

DS H & K2 |[naa_om1 HdEsPe® Pl kS % &
I ﬂ LFADULTY Mot EEE 1 HVPLD: | Sk OR1 bl

A X
o «f

S 000

CEE

The circuit above does an addition and it does an OR logic. A multiplexer is used to select which we want.
There is only one thing that is does not do, and that is passing just one of the values. Pass-through is useful, so
we can add this in by adding another control input and a final MUX.

Instead of creating the 4-bit adder (74283) and the multiplexer (74157), we will use the software library to
create the above circuit.

Finally, using Altera Software, we can combine the NEG/NOT and the ADD/OR as follows, so that we have a
circuit that can perform enough elementary functions that we could call it an ALU. This will be the ALU that
We use in our microprocessor.

lab activity : i

DDDDDD

8
B E
B E
[Sp3
< <
[k
)
Wk

Discussion of the ALU Design Methodology

It is extremely important to remember how to produce this ALU. The design approach we will use is to build
up simple circuit blocks, and then build up bigger blocks from the simple ones, and so on to greater levels of
complexity. This has made design of the ALU easy. Think for a minute how it would be to design an ALU out
of AND's and OR's. Doing it by blocks in stages is much easier. We do not need to worry about too many
changes to a circuit when we build it out of blocks. It is still likely that we could make the design smaller and
faster if we build it right out of the AND's and OR's using an optimal technique.

This reliance on a hierarchy of well-defined modules is commonly used in computer programming as well as in
digital circuit design. Structured programming and structured design techniques are like the block-design
approach that we have used in these labs. It is easier to use these structured techniques, and it is much easier to
make modifications to what we have done and for other people to understand what we have done. However,
unstructured techniques are usually better in terms of performance.

The current trend is for more and more work to be done in a structured fashion. However, for combinational
digital logic there is another option. POS and SOP designs can be used to generate any logic function. So we
could go with one of these designs, instead of the block design we have here. There are also Karnaugh map
methods (for small circuits) and computer optimization routines (for big circuits) to minimize the circuitry
needed for a function. These could be applied to the ALU above to give us an optimum circuit. In aread
design, this would be done because it is really no more difficult to understand or maintain the truth table of the
combinational circuit than it is to understand the blocks we have developed. Computer programs exist which
will automatically generate an optimal combinational circuit from its truth table.

For our ALU, we will use the MAX7000s device family. From this family of devices, we will use the
EPM7128SLC84-7 CPLD. We have selected this device because it is one of the two programmable devices on
Altera’s UP2 development board.

Programming the Target PLD

The last step in developing the ALU design for a PLD is programming the target PLD. The necessary files for
this purpose are generated in Quartus® 11 after the design has been successfully compiled.

MAX 7000S devices use the pof (Programmer Object File) programming file format and the FLEX 10K device
use the sof (SRAM Object File). These files are generated by the compiler and they include all necessary
configuration data for the appropriate PLDs.

lab activity : i

The next step in our lab is to configure the devices. This was discussed in the Introduction to Lab A. Review
that section as needed before you work on this section of the lab.

Configure Devices

Testing the ALU Circuit in the Altera UP2 Development Board

The final step in our lab is to test the ALU circuit in the development board. Since the switch and LED
connections to the MAX device are not pre-assigned in UP2, we will need to make the hard-wire connections.
For a complete description of the pin numbers and LEDs, use the tables contained in the Introduction of Lab A.

Device Programming

In this section, we will set up the UP2 development board for its EPM7128S device to be programmed with the
ALU circuit of this lab.

After performing the required steps, our ALU project implemented on the MAX 7000S device of the UP2 board
will be ready to be tested.

Lab Procedure: Build the NEG/NOT Circuit

1. Build the circuit:
a. Select File>New Project Wizard and enter the name for the project (NEG_NOT)
b. Click Next and Add INC-4 as part of your project as shown below.
c. Click Finish.

New Project Wizard: Add Files [page 2 of 6]

Select the design files and software source files you want to include in your project. Click
Add Allto add all design files and software source files in the project directory.

Mote: it is optional to add files here unless you have design files not contained in the project
directory, or files in which the file name is not the same as the entity name.

File name Type Add.. |
INC4 buf Block Dia...
Add Al

If your project includes libraries of custom functions, specify their
pathnames:

User Library Pathnames... |

Back | MNext | Finish Cancel

2. Now, click File New.
3. Select Block Diagram/Schematic File.

Create the NEG/NOT circuit shown here.

lab activity : i

C KR S
- INC4
'EAS :)Il‘\lfF('ng .in/SH
S e A3 Y3 QUTPUT :}YB
QUTPUT
o | s A2 Y2 Y
._A)D AT Y1 QUTPUT :)‘H
P A2 =272 A0 YO [R5 O
ins
SRS B CINcouT ETEED T
. WOR inst
A C—o—— 7
“o| o iinst3
o ow
1 AD —— 7
e instd
s
. I'PASS Y
{ NEGINOT D_L%UCT_ /
' pm—inaffE " iinstl?

Call this circuit the NEG_NOT circuit and give it the following symbol:

!-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-"Ifffﬁfﬁfﬁfﬁffﬁffx’x’!

H=g Mot

-
]
]
o

Ad
AZ
Al
Al

Y3

W
Y0

"“H‘Q‘w-."H‘Q‘x"H‘Q‘xHHHHHHH‘IHHHHHH“-H‘Q‘-Q‘-a.“x“x“x"\.“x“x“x

Build this circuit in Altera, compile it, test it, box it, and add it to your library. If you have forgotten how,

refer the steps you used in Lab A.

. Afteritis in your library, test it again. This is a circuit you will be using again, so ensure it is correct now.

lab activity : i

8. You should get the following results for the Neg_Not Symbol Waveform Diagram test:

b azter Time Bar: 0 pz +| | Fainter: 1712 nz Interval: 1712 ns Start: 0ps End: 1.0us
Vale at ps 1IJ.ID ns 2[!.!] ns SD.FI ns 4EI.ID ns 50.0 nsI
Mame Ops [Ops
i
= Inpuits Hz2 2 o 3 by q b 5 by G
| | Cout HO
1 MNEG/MOT HO | |
| Pass HO | 1
|| Outputs H2 2):(]) § 4) 4 &,) | 3
NEG/NOT PASS FUNCTION of the Above Waveform Diagram
0 0 PASS-THROUGH the value of 2
0 1 TWO'S COMPLEMENT of 3=D
1 0 PASS-THROUGH the value of 4
1 1 ONE'S COMPLEMENT of 5 = A

9. Create a bus.
a. A “bus” is asingle line on the schematic that represents a group of related signals as shown here.

} S

A T

b. Todraw a bus, click the Orthogonal Bus Tool button from the tool bar.

c. Name the bus. The following are examples of legal bus names: A[4..1], the name defines a single-range
bus whose identifier is A and contains 4 bits. The individual bits of this bus are A4, A3, A2, and Al (or
A[4], A[3], A[2] and A[1]). The MSB is A4 (or A[4]); the LSB is Al (or A[1]).

NOTE: Make sure you name the actual bus line and not just changing the name to A[4..1].
d. Specifying the line of the bus a wire is connected to by selecting the wire.

e. Inits node properties window, set its name to the name of the bus indexed by the bus-line it is connected
to. For example, naming a wire as A[1] connects the line to bit 1 of bus A[1..4].

lab activity

10. Run the AND-4 gate timing circuit. Your results should look like this.

Simulation Waveforms

Simulation mode: Functional

b azter Time Bar: 100925 n= 4| | Painter: FET.37 ns Irterval: 77E.45 ns Start: 0ps End: 1.0 us
70,0 hs 780.0 nz 790.0 ns 200.0 ns 810.0 ns g20.0 nei
Mame “alue at i i i i
10.93 ns
g A B 0001 1101 b4 1170 b 1171 b 0000 b 0001
L AND_4 HO

11. Apply the same method to make the rest of the connection of the Full_Adder circuit.
a. Select 74283 device (4 bit adder) from others directory.
b. Select MaxPlus2.

—ﬁ File Edit ‘iew Project Assignments Processing Tools Window Help
O = =1 h2 |[Fuil_sdder Sl rSeD LA RS DR
b A FE Full_Adder.bdf
o O -
17 %L
s -
& |
= ¢ H
—————— ET
. . A 1] L 5
[ha [— =
................ S =
[] [CIr
NN [1] 1 —_
R[] B1 SUMT Likd[1] ;
[2] a2 EUM2 LIkdf7] E]
1wl Bz SUM3 Lihdf=] -
&[] 8% SUmM4 Lihdf4]
B B3 COUT *
[] s M
120 B4
S . s
B..1]
<
12. Test the circuit. Your results should look like this:
Master Time Bar: 10.0 ns 4| +| Pointer: E19ns Interyal: 381 ns Start: End:
0 ps 10.0 ne 20,0 ng 30.0ns A0.0 he B0.0 n4
Name Walue at I i i i
10.0ns 1U-UJ ns
i 2 HA1 1] 1 b 2 b4 3 b4 4
i B HA1 1] 1 i 2 b4 3 b4 4
| Cin HO
L cout HO
= SUM Hz i Z b 5 { 3 by B

10

Lab Procedure: Build the ADD/OR Circuit

lab activity

ﬁFile Edit View Project Assignments Processing Tools Window Help - | =
0O & =] K? | |add_OR RalE g A ey &
% ﬁ I:/FACULTY /M atar/EEE120/PLDs.._fAdd_OR1.bdf I
A ¥
D A[‘q):
D B3]
1 2l
"1 B
71
-li? #4021 -
@\ all
B[I]
(]
dh
‘ 74283
O | A =D B ¥
)] a1 #2 A VT GBI
[} =) 0 Bl SUM —j = V2 e
. ? M B A2 SUMZ &3 Y3 o)
FET B2 SUM3 | B3 4 =
™ o &3 SUM4 24 X
A B3 COUT —— B4
B i S 111118 o and o G
- B4 IPLEXER ..
* ; inzt, 4 BIT ADDER:
-
T A e T
>

13. Create the circuit above from the Others directory and then MaxPlus2.

Libraries:

741530

74157m
741570

74158

741500

74160

FA1E1

T4162

741RA bt
3 »
Mame:
|ra157 J

¥ Repeat-inzert mode

[Insert symbol a5 block
-

Megawizard Plugln Manager... |

o]

Cancel |

SEL
a1
B1
A2
B2
A3
B3
m
B4

Al
W2
WA
W

=0 GN
st

11

lab activity

14. Select the MUX 74157. In the 74157, when the data select is 1, the Bs inputs are selected. In order to pass

the A’s values, we need to connect a NOT gate to the selector which will allow us to route the As inputs
when the data selector is 1.

taster Time Bar: 12425 nz | ¥| Painter: M 8dn: Intereal: 2241 nz Start: End:
ake/a L2 LIPS 200 ns 300 ns 40.0ns 50.0 nd
Mame 1243 0s 12425 s
o |
| = oA HE 4 W 5 ¥ 5 y = ¥ 5
=d B H7 E by 7 ¥ g y 5 y =
= @ H7 BN 4 7 i E i F y Z
E ADD_DR H1 7—l—’—|—
| couT HO \ |
| | CIN Ho \\
ADD/OR F\Jp/(:TlON
0 ADD (4+6=A)
1 OR (5 ORed with 7 = 7)

a. This expanded circuit is shown here:

¥
-
af
B[4
4031
E]
- T i
= =
I 14
LSO B1
A 11
#011 a2 n :m
Gl 1 Bz A
- It Vi s}
HED B3 w4 =
T o 2
4 B x=
R T o .
SEL s MULTIPLEXER
g vazEr Al
- CIk Bi
Al A 1
Bl SUNT —— B2 2
A2 sUME | 8 3
B2 SUNE _._| B3 Y4
A SUNK | A
B3 COUT|— B
= | —{* o BH :
1 18 iy WIOCTIFLERER
%3 irg) BT AD0ER |
Lot

12

lab activity

b. The following function table describes this circuit:

ADD/OR PASS FUNCTION
0 0 PASS-THROUGH
(the values of the As)
0 1 ADD
1 0 PASS-THROUGH
(the values of the As)
1 1 OR

c. Give the ADD/Or circuit the following picture:

AL inst
— A4
— A3
— A2
=1 A1

A
— B4 AN
— B3

Y2
— B2
— BE1 A
—1 INVERT
— ARITH_LOGIC
— AONLY
=1 Cin Cout f—

15. Build this circuit in Altera software.
16. Build the device for it and add it to your Library.
17. Test the circuit. Your test results should look like this:

kaster Time Ear: 166 ns +| »| Paointer: 8.34 ns |nkerval: -8.16 nz Start: End:
Yalue at = VO e 200 ns 0.0 ns 40.0 ns 50.0 ns E0.0 n4
e 165 ns 165
|
i L) H4 3 b 4 b4 5 W [b 7 b4 g
= B HE E b g b4] 1] b A b B
! ADD_OR HO I |
| = | PASS H1 —l—_|—|—|
S| = v Hs ERN G N S N E—— G S S
1 CIM HQO
2 cauTt HO |

18. Be prepared to describe the procedure you have used to test it and how the test procedure fully tests the
circuit.

13

lab activity : i

Lab Procedure: Building the ALU Circuit

NOTE: A larger drawing of this circuit is shown at the end of this lab procedure.

P — == p 5 2
= — o il i e | | s
— I'::?}?NOT Cout T g; :12 — e “7
e R
19. Build this circuit in Altera software.
20. Build the device for it and add it to your Library.
21. Give the ALU the following picture:
— INVERT
o™
22. Test the circuit. Your test results should look like this:
Value at 0 ps Tﬂpns 2Dpns 3D.pns 4D.|Uns SD.IUns E0
Name 11.45 s 1145 g
o
| B AU, HI 0 Y T Y 7 Y 1 y I y 5
| [Inputs H3 2 b 3 b q b 5 b 3 b 7
™4 InputsB HE 5 Y £ b{ 7 Y] b q ¥ T
| i HO
12| B Oupus HE 2 b E b 2 b D b 7 b B
|| Cout Hi e e Y

23. According to our Altera software compilation, the final Time Propagation Delay (tpd is 19.9 ns.)

NOTE: As you can see in the final timing simulation result above, there are a couple of glitches in the output.
Remember, the target device is not specified yet and therefore, Altera software uses a generic model that does
expose the potential for a glitch in the design.

24. Write a short description of how you have tested it. Include the following information:
a. What is the function table for this circuit?
b. What are the control inputs combinations?

14

lab activity

c. Create the following table in your report and find the function of the ALU for each of the control
combinations (Aonly, Arith/Loigc and Invert)

Function Table of

the ALU

<

ARITH/LOGIC

INVERT

FUNCTION

HEX INPUT

HEX INPUT
B

HEX
OUTPUT

0

PASS-THROUGH

2

2's COMPLIMENT of A

PASS-THROUGH

1's COMP of A

Aplus B

(2's COMP A) plus B

ACORB

(1's COMP of A) OR B

PASS-THROUGH

2's COMPLIMENT of A

PASS-THROUGH

1's COMP of A

Anplus B

(2's COMP A) plus B

AORB

I—\I—\Hl—‘OOOOl—‘I—‘I—‘I—‘OOOOE>

Rk |lo|lolr|r|lo|lo|kr|r|lolo|r||o

ROk IOk |O|FR|O|FR|O|Fk|[O|F|O|(F—|O

(1's COMP of A) OR B

DD (DB BB NN NN NN NN >

WWWwwwwlwofojonjonjorjorjor|jo

N [Wlo (O |(>|o|>|O|N|lw|~N|O(nd|m

Lab Procedure: Device Programming

25. For our ALU, we will use the MAX7000s device family. From this family of devices, we will use the
EPM7128SLC84-7 CPLD. We have selected this device because it is one of the two programmable devices
on Altera’s UP2 development board. The figure below shows the project definition page in which the

project is defined.

Sellings - Hall_Adder 3]
Caregons
Gerersl Device |
Fiea
User Lizesries Sedct the Fandy andd tirvice you vanl In baget for complaion
Deven
Tty Recpae —
e Fardy. [Wect 000 =] Dee s P ptires.. |
Complsl -)
Tonget device
s & Syetwia Seting &
- File Setioge " utu device seiecled by e Fiter o lhe Huralsble devioss ket
Tinira Angaee @ Speuiv: device sebected n Voralable devioss b
Desgn Assstand # A Pins...
SignalT a0 Logis Anthasr
SignaiProbe Sriing & o
Samdsien e . L .
EPMAEASLEA 10 W Showin Aslatle devicer in
Softvee Buskd Silings P TEALS)
[—n—— Pockege: [ny z)
Pncourt [fey =
Speed grade: [ty =|
Core vohage: S04
EPMIUEAS 11100 W Show Aubvarrced Devicss
EPHPE4STCIN0-10
EPM/TZEELLEE
EPMTZEELLEH0
_ Gl |

15

lab activity

26. Select Assign Pins from Assignments menu to assign Pins to our inputs and outputs ports of our ALU
circuit to the pins of the CPLD we are using. The corresponding window is shown below:

Sekect a e A he lypes of ssagremneed ‘e ks i e Aigravend Edlion ored e
¥ vt Ubrnsime P Lo s B [& P Dphions: chakesy b
ou rnait e e e g

Asenilabin Pina L Exnting Assigrenents

Hu.. | Hama T 170 Bark: [10 Seandidt | Typs | Signaloabe Source Name | Ensbied | Status [Clock [Re.. | ~
M4 A1 N LVITL m oan
= A i LVITL 0 o
&% ik WITL o
i Al N LVITL m oan
-] A4 N LVITL m on
a2 m Nk LVITL] o
I Nt WITL 110 an
n B3 N LVITL m oan
b it LVITL o
noWm Nk LVTTL o i}
M Nt WITL 110 an
B AONLY N LVITL m on
% ARITH_LOGIC Nk LVITL] o
i At ik WITL 10 o
= N LVITL oan
.] N LVITL m on
40 Nk LVTTL I o
" Nt WITL 10 an
o N LVITL oan
8 it LVITL o
" ik WITL o o
& N LVITL m oan
4E b
p

[Careel

a. Scroll down the device’s pin list.

b. Click on the pin that is being assigned to a circuit node.

c. Type the name of the node of your circuit in the assignment area, next to the Pin. In our ALU circuit,
we type the name of the node in association of the highlighted pin number. We assign Al, A2, Al, A2,
B1, B2, B3, B4 AONLY, ARITH_LOGIC, and INVERT inputs to pins 24, 25, 27, 28, 29, 30, 31, 33,
35, 36, and 37 as respectively as shown above. Also, the outputs Y1, Y2, Y3, and Y4 to pins 48, 49, 50
and 51. The reason for this selection becomes clear after we discuss the UP2 board in the next section.
In assigning pins, make sure reserved pins, such as those of the JTAG, are not used. For example, pin
26 is reserved and not used as 1/0.

The circuit now shows the appropriate pins for inputs and outputs as shown below:

CivrieL SN
Neg_Not
o O 43 Y3 A
Option | Value | ~* PR — A2 Y2 A3
Location|Pin_28 [AZ — A1 e A2 " i :
Location|[Pin_27 | A7 il A / A = ;
= - I Al o Al va | —— Option | Value
Location|Pin_25 ——
V3| ——TET Y Location|Pin_51
Location|Pin_24 —— pass B4 ; v =
BN ; Cout — B3 R I I Option | Value
NEG/NOT < 1 Location|Pin_S0
B2 it e ——
nsti &1 H Location|Pin_43
... —
g s Location|Pin_48
= C__— .
0o_OR
[Option [Value | —— s Cout| —JUIEUT
Location|Pin_33 [EZ - < T
Location|Pin_31 [21 e T
Location|Pin_30
Location|Pin_29 [THVERT A
Option | Value | ~~T7_SCGI8 T
Location|Pin_37 [ACHLY ol
Location|Pin_36 -
Tocation|Pin_35 |- N -

16

lab activity

27. Compile your circuit one more time to make sure there are no errors.

28. Complete the following steps before running a simulation. This simulation is often referred to as post-
synthesis, because it simulates the actual gates and cells of the target device (the device that will be
programmed).

a. Before we start our simulation, we have to specify input values for the Half Adder (A and B). To do
this, form the file menu, select New and then Vector Waveform File in the Other Files folder to open
the waveform editor window as shown below and click OK.

Device Design Files] Software Files Other Files l

AHDL Include File

Block Symbal File

Chain Description File
Hex=adecimal [Intel-Format) File

Memary Initislization File
SignalTap |l File

Tel Script File

T

Cancel

b. The waveform file is initially blank and we need to enter our node names and their associated
waveforms. Save the waveform as ALU.vwf.

c. Use the right mouse button and select the Insert Node or Bus. This brings up the Insert Node or Bus
window as shown below:

I ame: | (] 8
Type: |INF'UT j Cancel
Walue type: |9-Level j Mode Finder...
R adix: | Hexadecimal j

Bus width: |'I

Start index: |D

[Display gray code count as binary count

d. Click on Node Finder and select Pins: Assigned and click List to view all the nodes that apply to our
circuit.

17

lab activity

e. Next highlight all the nodes and click the >> symbol button to copy all nodes to the Selected Nodes list
as shown below. Click OK to accept all the nodes inputs and outputs.

Node Finder 3]
Named:]' L] Fitter: 1Pins: assigned j Customize...] List Q Ok |
Look in:fALU‘t _J ¥ Include subentities I Cancel ‘
Nodes Found: Selected Nodes:
| Mame | Assigrments | T | Name | assignments | T
A1 Pin_24 Ir I |ALU4|AL Pin_24 Ir
A2 Pin_25 Ir I |ALU4|A2 Pin_25 Ir
A3 Pin_27 Ir 9 |ALU4|A3 Pin_27 Ir
I A4 Pin_28 Ir I |ALU4|A4 Pin_23 Ir
B AQNLY Pin_35 I BB |ALUS|AONLY Pin_35 Ir
I ARITH_LOGIC Pin_36 Ir I5* |ALU4|ARITH_LOGIC Pin_38 Ir
IFB1 Pin_29 I _>J B |ALU4jB1 Pin_29 Ir
B2 Pin_30 I B |aLU4jB2 Pin_30 Ir
IB"B3 Pin_31 I i] B |ALU4|B3 Pin_31 Ir
B4 Pin_33 I - |aLU4|E4 Pin_33 Ir
KB INVERT Pin_37 I _<J 5 |ALU4|INVERT Pin_37 Ir
Y1 Pin_43 (s iJ £ |ALU4]Y 1 Pin_43 o]
fo 2 Pin_49 [£ |aLu4fY2 Pin_49 o]

b o 2% Pin_50 C P |ALU4]Y3 Pin_50 [s]
fo A Pin_51 (s P |aLU4]Y4 Pin_51 o]
& # S %

29. Run a functional simulation for sub circuits. Run a timing simulation.
Lab Procedure: Programming the Target PLD

30. To start the device programming process, select the Programmer from the tool menu as shown below.

@Flla Edit View Project Assignments Processing [ECs-8 Window Help

(M= = A2 | & RunEDASimulation Tool
0 x| + Run EDA Timing Analysis Tool
Entity ‘ Wacrocels s M1ETAY Launch Software Debugger Ctrl+5hift+D
Compilation Hisrarchy B compler Tool
> Haf_Adder 2

£y Simulator Tool
B Timing Analyzer Tool

@ Chip Editor
@ RTL Viewer

Add F SignalTap II Logic Analyzer
@ Programmer

: \ MegaWizard Plug-In Manager. ..
5 50PC Builder...
Td Scripts. ..

& Add T

Customize...

Options...

License Setup...

18

lab activity

31. This brings up the device configuration window as shown below.

1l Half_Adder.cdf* =
é Hardware Setup... | BpteBlasterl] [LPT1] Mode: |JTAG | Fiogess: 0%
[] [Program/ | Blark- | Securi
Wi Seat File Device Checksum Usercode | - Verfy | Examine | &
Corfigure Check Bit
1. ...AGE AMHalf_Adder.pof EPM71285.84 001E1AB7 0000FFFF

kb At Detect

% Delete

(B Add File...

B Change File.

(2 Add Device

32. Before you click start, make sure that the development board containing the target device has been properly
configured for programming. For our ALU circuit, the ByteBlasterll has been selected and assigned to port
LPT1 using JTAG (Joint Test Action Group) mode.

NOTE: If the Quartus® Il environment is being used for the first time, you should setup its programmer

hardware. Refer to Lab A for the proper process to set up the hardware.

33. After you have completed your setup in the configuration window, select Start to download. Program and
configure are terms synonymous with download.

T Got vem Pem Ao Privesrs Tis Wi reb

D& 1 AL AR L I AN AL
= T Tie=a]| L, Mardware Senp | ByteEtactert LFT1] i i Mo nnr. i | Progres:
[y oo T T Prgem Barke | Secarty

W e e Crackam | Lsercode | ety [
1 1 Cordurs Ok | B
L Al DesgryA et TPHTIZERN WD GROTPE] o o0 [u]

b At Dot

b A Fie

19

lab activity @

34. After the downloading is completed, as indicated in the progress bar by 100% on the blue bar graph, the
object design is ready for testing on the circuit board. Keep in mind that the relatively simple ALU logic
circuit will use much more space of the total capacity of the target device compared to our previous simpler
circuit (Half_Adder).

35. View the interior LABs by selecting Interior Labs from View of the main menu.

] ..l

36. View the top of your ICs package EPM7128SLC84-7 CPLD. Notice the pins locations for our inputs,
outputs, and ALU controls.

oo
o

- 3
= £ B = g
E _ = S - - :
§ &€ 3 &8 B8 &€ &€ € &8 8 o &8 o B £ & &8 &8 g &g &
0 0 0 0 0 0 0 0 8 @ @ 6 % @ 0 0 0 0 0 1
] e
) C..
. L.
. e
] e
Wy —f T V' B =R
o op ew R
i C..
. e
- i
I:l m—l =)
. A e
S — R
R
ek R
et C..
. e
. e
PR EPM7128SL.C84-7 REp.
- — EO) ALU4 B —R-
. .
el o
. .
e e
I 0T 0T 0 0 0 0O 0O O 0T 0T 0 O I 0T 0T 0T 0 [
=3 g g =3 g -3 g g g a8 E =3 g g =3 g g =3 g g a
=====================
£ s £ 8 ¢ g = 5 8 8 3 £
2

20

lab activity : i

Lab Procedure: Testing the ALU Circuit in the ALTERA UP2 Development Board

a
[
L.
N
-t
(g
-

:
e -
BEAFAFRAREI RS AR L] FRERNA &S

" .
EBARER AR RN AR SRR A R | B

37. Connect MAX_SW1 (8 inputs,1,2,3,4,5,6,7,8) switches to device pins pins 24, 25, 27, 28, 29, 30, 31, and 33
as shown in the picture above.

38. Hard-wire the ALU controls (Aonly, Arith_Logic an Invert) pins 35, 36, and 37 to MAX_SW?2 (6,7,8).

39. Hard-wire the ALU output pins 48, 49, 50 and 51 to LEDs D1, D2, D3, and D4.

40. Use the table below to make the connections to the eight switches that provide logic- level signals for
MAX_SW1 and MAX_SW?2 by inserting one end of the hook-up wire into the female header aligned with
the appropriate switch. Insert the other end of the hook-up wire into the appropriate female header assigned
to the 1/0 pin of the EPM7128S device. The switch output is set to logic 1 when the switch is open and set
to logic 0 when the switch is closed. The power, ground, and JTAG signal pins are not accessible through
these headers.

P1 P2 P3 P4
Dutbide Inside Outside Inside Outside Inside Outside Inside
75 76 12 13 33 34 54 55
77 78 14 15 35 36 56 57
79 80 16 17 a7 a8 58 59
81 82 18 19 39 40 60 61
83 84 20 21 41 42 62 63
1 2 22 23 43 44 64 65
3 4 24 25 45 46 66 67
5 6 26 27 47 48 68 69
7 8 28 29 49 50 70 71
9 10 30 31 51 52 72 73
11 X 32 X 53 X 74 X

Pin Numbers for Each Prototyping Header

21

lab activity : i

41. Use the table below to connect the LEDs D9 through D16 in the same sequence to the female headers (i.e.,
D9 is connected to position 1, and D10 is connected to position 2, etc.).

Female Female

Header Header

Position LEDs Position LEDs
1 0 D1O 1 0 D9
> O D5 QO 2 0O Oms @)
3 O D20 3 O D10)
4 O D6 O 4 O D140
5 O D30 5 O D11 O
6 O D7 QO 6 O D150
7 O @) 7 O D120
8 O 1 @) 8 O D16 O

LED Corresponding Female Headers

42. Set the board jumpers as shown in the figure below in order to program this device.

TDI TDO DEVICE BOARD

St

c2 c2 c2 ‘ ca
C3 C3 C3 C3
Desired Action TDI TDO DEVICE BOARD
Program EPM71285 device | C1 & C2 Cl1&cCz Ci1&cC2 C1é&C2
only

22

lab activity

43. Click on the Start Programming icon of the Programming tool bar. Within a few seconds, the EPM7128S
devices will be programmed with the ALU.pof file that corresponds to our ALU design circuit. Make sure
the selection says Functional under Assignments, Settings.

Category:
Files
Uszer Libraries Select options for simulations.
Device
. ;g:?::gl:{z:;ms & Oplions Simulation mode: |Funchnna| ﬂ
Compilation Process Simulation input: | J
+|- &nalysis & Synthesis Settings
=I- Fitter Settings Simulation period
T .thlcall Synthesis Dptimizations £ Run simulation until all vector stimuli are used
e nalyzer
Desig?w Assiﬁtant " End simulation at:
SignalTap Il Logic Analyzer
SignalProbe Settings Simulation options
Sirnulator

W automatically add pins to simulation output waveforms
[T Check outputs
r

r o [=l

I Simulation coverage reporting

+- Software Buid Settings
Stratix G Registration

[~ Owvenarite simulation input file with simulation results

=
e
Cancel

44. After all connections are made, test the EPM7128S implementation of our ALU design.

A HEX INPUT | HEX INPUT HEX
ONLY' | ARITH/LOGIC | INVERT F A B OUTPUT
0 0 0 PASS-THROUGH 2 5 2
0 0 1 2's COMPLIMENT of A 2 5 E
0 1 0 PASS-THROUGH 2 5 2
0 1 1 1's COMP of A 2 5 D
1 0 0 A plus B 2 5 7
1 0 1 (2's COMP A) plus B 2 5 3
1 1 0 AORB 2 5 7
1 1 1 (1's COMP of A) OR B 2 5 D
0 0 0 PASS-THROUGH A 3 A
0 0 1 2's COMPLIMENT of A A 3 6
0 1 0 PASS-THROUGH A 3 A
0 1 1 1's COMP of A A 3 5
1 0 0 A plus B A 3 D
1 0 1 (2's COMP A) plus B A 3 9
1 1 0 AORB A 3 B
1 1 1 (1's COMP of A) OR B A 3 7

23

Lab Questions

1. Complete the table below for the following NOT/NEG circuit.

lab activity

L xbR """ L
B T N L e ————— o
R ! [-1 /D_—I......INCA' O
' S .. iinstt A3 v3 GBI ¥
SEEEEEEEEEN EEEVRER T o v [o
"——‘)D Al vy R
A2 > ‘RIIFC':UCT — m/stz AO Y0 OUTPUT :) Y0
.......... B CINCOUT QUTPUT :> Cout
.......... .. #OR inst
T .__\) S
el ——— 0 — SR
INs
e BEEEEEE
._
s T) > N
INs
e A3 Sl N
. NEGIN_OEFF’ASS — I —\\
i M S T i SESEE I
Input values of Output values of Indicate the function of the
NEG/NOT PASS A3 A2 A1 A0 Y3Y2Y1YO0 output
0 5 (0101)
0 A (1010)
1 C (1100)
1 9 (1001)

24

2. Complete the table below for the following ADD/OR circuit.

lab activity

Input values of Input values of Output values of Function of the Output
ADD/OR | PASS A3 A2 ALAD B3 B2 B1 B0 Y3Y2Y1Y0
5(0101) 9 (1001)
0 0
A (1010) C (1100)
0 1
C (1100) A (1010)
1 0
9 (1001) 5 (0101)
1 1
T L
T |
403 i B2 T2 é-m
* e X
T o :
SEL g IILTIPLERER, |
i Al
B ;
i A2 1
- _ Bl SURT [B2 o =
X L[] ‘I i
“ e sun] SR
6] AE SUne et H
7 B2 COUT|— B4
E[4] Aa
— B4

ire) MULTIFLEXER

25

3. Complete the table below for following ALU circuit.

lab activity

L T —

A3
A2
Al
Al

FPASS

MEGMOT

3

ADD_Dﬁ""m"m
inat

2

1

0

Cout —

Linstt

‘B3

B2

=l

P ARITH_LOGIC

Ad
A3
A2
Al

B4
B3
B2
B1

ADD_OR
PaSS

Cin

A
3
2
1

Cout

'B.LIIF_LL'I_D v

L e S

A ONLY'

ARITH'/LOGIC

0

[l il el el el le]

===

INVERT

0

P ORrROROLPR

HEX
INPUT A’s

Mi>|hlaja|>|w|N

26

HEX INPUT

B’s

Omo N A~NOO

HEX OUTPUT
Y's

Function

kwaqur(:;i>

4. Explain the following floor plans of our ALU circuit targeting the EPM7128SLC84-

CPLD.

27

lab activity

ALU Circuit

nos

U —

AT

=" oo HLy

LH3ANI

1

S9vd [

40 00y

A

mml|

tA

| naz

A

B8 |

LONIN |—-

04 Il

n |

j
TN
TR :
T | 78
T :
T | o i
4
M

o

=

e

Ih I

2

S s

£

b

28

