
LabVIEW & NI myRIO
Design Real Systems, Fast

Mostafa Salama

Vehicle and Robotics Engineering Laboratory - VREL
University of Alabama at Birmingham - UAB

Part 1
LabVIEW

• Compiled graphical development environment
• Development time reduction of four to ten times
• Tools to acquire, analyze, and present your data

What is LabVIEW?
Laboratory Virtual Instrumentation Engineering Workbench

•Use LabVIEW Projects to:
• Group LabVIEW files and non-LabVIEW files
• Create build specifications (i.e. stand-alone applications)
• Deploy or download files to targets (i.e. FPGA target)

4

Project Explorer

Answer: a LabVIEW program

1. Front Panel
 User interface (UI)

– Controls = inputs
– Indicators = outputs

2. Block Diagram
 Graphical source code

– Data travels on wires from control
terminals through functions to indicator
terminals

– Blocks execute by data flow

3. Icon/Connector Pane
• Graphical representation of a VI
• Means of connecting VIs (subVIs)

What is a Virtual Instrument (VI)?

* Conn. pane
available from
FP only

Front Panel Toolbar
•

Ru
n

•
Ru

n
Co

nt
in

uo
us

ly

•
Ab

or
t

•
Pa

us
e

•
Te

xt
 S

et
tin

gs

•
Co

nt
ex

t H
el

p

It is best not to use the Abort button because
you run the risk of not closing references or
cleaning up memory correctly

Front Panel Controls and Indicators

Customize
Palette
View

Numeric Boolean

String Right click!

Shortcut Menus and Properties Dialog
Right Click!

Block Diagram Toolbar
•

Ru
n

•
Ru

n
Co

nt
in

uo
us

ly

•
Ab

or
t

•
Pa

us
e

•
Hi

gh
lig

ht
 E

xe
cu

tio
n

•
Re

ta
in

 W
ire

 V
al

ue
s

•
Te

xt
 S

et
tin

gs

•
Cl

ea
n

U
p

Bl
oc

k
Di

ag
ra

m

• Wires
• Transfer data between block diagram

objects

• Wires are different colors, styles, and
thicknesses, depending on data type

• A broken wire appears as a dashed
black line with a red X in the middle

Block Diagram

• Terminals
• Block Diagram appearance of front panel objects

• Entry & exit ports that exchange information between the
front panel and block diagram

• Analogous to parameters and constants in text- based
programming languages

Scalar
1D Array
2D Array

 DBL Integer
 Numeric Numeric String

• Press <Ctrl>-B to delete all broken wires
• Right-click and select Clean Up Wire to reroute the wire

• Use the Clean Up Diagram tool to reroute multiple wires and objects
to improve readability

• Select a section of your block diagram

• Click the Clean Up Diagram button on the block diagram toolbar (or
<Ctrl>-U)

11

Block Diagram: Wiring Tips

Block Diagram
• Nodes

• Objects on the block diagram that have inputs and/or outputs and perform
operations when a VI runs

• Analogous to statements, operators, functions, and subroutines in text-
based programming languages

 Functions
• Fundamental operating

elements of LabVIEW

• Do not have front panels or
block diagrams, but do have
connector panes

• Double-clicking a function
only selects the function –
does not open it like a VI

• Has a pale yellow background
on its icon

 Structures
• While loops, for loops,

event structures

• More discussion later

 subVIs
• VI that you build to use inside

another VI

• Any VI has potential to become a
subVI

• Double-clicking a subVI will open
it (exception: Express Vis- config.
window opens)

• Icon represents subVI in main VI

Common Data Types Found in LabVIEW

Numeric Controls and Functions

• (Front Panel) From the
Controls»Modern»Numeric subpalette,
select the Numeric Control icon.

(Block Diagram) From the
Functions»Programming»Numeric
subpalette, select the Add icon.

Mathematical Operations

• (Block Diagram) From the Functions»Mathematics»Integration and
Differentiation subpalette, select the Derivative x(t).vi

Boolean Controls and Functions
• (Front Panel) From the

Controls»Modern»Boolean subpalette,
select the Push Button icon.

(Block diagram) From the
Function»Programming»Boolean
subpalette, select the OR icon.

Data Flow

 Block diagram execution is
dependent on the flow of data

 Block diagram does NOT execute left
to right

 Node executes when data is
available to ALL input terminals

 Nodes supply data to all output
terminals when done

 If the computer running this code
had multiple processors, these two
pieces of code could run
independently without additional
coding

Tutorial 1: Simple Algebraic Equation

Tutorial 2: Simple Algebraic Equation

Tutorial 3: Parallel Computations

Tutorial 4: Loops

Tutorial 5: Case Statements

Tutorial 6: Push button Counter

Tutorial 7: Control & Simulation Module

Tutorial 8:
Differential
Equations

Part 2
NI myRIO

The Problem

• Today’s tools do not let engineering students
accomplish real projects within one semester

The Solution

• Students need a powerful hardware / software
solution that allows them to get up to speed quickly

What is NI myRIO

• An embedded hardware / software device designed
specifically to help students design real, complex
engineering systems more quickly and affordably
than ever before.

NI myRIO

Xilinx Zynq FPGA and dual-core ARM
Cortex-A9

Stereo audio I/O

User defined LEDs

User defined
button

10 channels analog input
6 channels analog output

40 channels digital I/O
(SPI, I2C, UART, PWM,
Encoder input)

Integrated WiFI

Onboard 3-axis
accelerometer

Additional Features

•Fully programmable FPGA through
LabVIEW FPGA

•Dual-Core ARM Cortex-A9
processor

•Expandable ecosystem of sensors
and actuators

•Ready to use projects and
courseware

•Deploy code to real-time processor
and FPGA via USB or WiFi

•Minutes to first measurement
•Processor programmable in C/C++

NI myRIO Expansion Port (MXP)

4 AI

2 AO

3 PWMs

1 Quad Encoder

1 UART
1 SPI

1 I2C

5 DIO

MXP B

Identical Connectors

MXP A

miniSystems Port (MSP)

Identical to NI myDAQ

RT Template VI

Express VIs to Advanced VIs Open Source

NI myRIO Palette

Connecting myRIO to your Computer

Start my first project now [Recommended]

Choose Environment Settings

• Choose LabVIEW for myRIO.
• Then click Start LabVIEW.

Part 1: Creating a myRIO Project

• Click Create Project
from the Getting
Started window of
LabVIEW

Part 1: Cont’d

• Select Templates>>myRIO
and then select the myRIO
Project template in the
Project List.

Part 1: Cont’d

• Enter My First NI myRIO Program under
Project Name.

• Under Project Root, specify the
directory into which you want to
save the project. labVIEW will
place all the project files and Vis
in this directory.

• In Select Target, select the NI
myRIO that you connected to
your computer.

• Click Finish.

Part 1: Cont’d

• Explore the Project Explorer
window. If you want to learn more
details about this myRIO project,
open myRIO Project Documentation.html
under Project Documentation.

• You have successfully created a
myRIO project. Proceed to the
next tutorial to learn how you can
create applications based on the
myRIO project.

Part 2: Testing the Accelerometer

• NI myRIO contains an onboard accelerometer that
can be used for general orientation and acceleration
measurements.

• Open Main.vi from the
Project Explorer window
of your myRIO project. By
default, LabVIEW opens
the front panel of Main.vi.
The front panel is the
user interface of a VI.

Part 2: Cont’d

• Press <Ctrl-E> to switch to
the block diagram. The
block diagram contains
the graphical code of a VI.
This VI uses the
Accelerometer Express VI
to read acceleration
values from the onboard
accelerometer and uses
the waveform chart
indicator to display the
acceleration values

Part 2: Cont’d

• Double-click the Accelerometer
Express VI to display the
Configure Accelerometer dialog
box.

• Press <Ctrl-H> to display the
Context Help window. You can
move the cursor over options in
the dialog box and learn basic
information about the options
from the Context Help window.
Most objects in LabVIEW display
context help information.

• Click OK to apply your
configuration.

Part 2: Cont’d

• Press <Ctrl-E> to switch to the front panel and click
Run. Rorate or shake your NI myRIO to see the
changes of the X, Y, and Z acceleration values on the
waveform chart.

• Click Stop.
• Click File>>Save.

Part 3: Testing the LEDs

• In the block diagram window
of Main.vi, click View>>
Functions Palette. You can
find all the myRIO VIs and
LabVIEW functionality on the
Functions palette.

• Select
Functions>>myRIO>>Onboard
Devices to locate the LED
Express VI.

• Click the LED Express VI and
add it to the While Loop in
Main.vi.

Part 3: Cont’d

• In the Configure LED dialog
box, select the LEDs you
want to test and click OK. in
this tutorial, we will test all
four onboard LEDs.

Part 3: Cont’d

• Right-click each block
diagram input of the LED
Express VI and select
Create>>Control to create
Boolean controls for the four
LEDs. You can click a Boolean
control to toggle between the
TRUE and FALSE states, which
determined the ON and OFF
states of an onboard LED.

Part 3: Cont’d

• Press <Ctrl-E> to switch to
the front panel. You can
arrange the four Boolean
controls in a layout that you
like.

• Click Run.
• Click the four Boolean

controls and see the status
changes of the onboard
LEDs.

• Click Stop.
• Click File>>Save.

Error checking in LabVIEW

• Right now Main.vi stops if the
Accelerometer Express VI returns
an error. You need to add code to
handle errors that the LED
Express VI might return. You can
use the Merge Errors function,
available by selecting
Functions>>Programming>>Dialo
g & User Interface>> Merge
Errors, to merge errors from the
Accelerometer and LED Express
VIs.

• Error checking is important
because it can tell you why and
where errors occur.

Part 4: Testing the Button

• In the block diagram window
of Main.vi, click
View>>Functions Palette and
select
Functions>>myRIO>>Onboard
Devices to locate the button
Express VI.

• Click the button Express VI and
add it to the Whil Loop in
Main.vi.

Part 4: Cont’d

• In the Configure Button
dialog box, click OK to
enable testing the user
button.

Part 4: Cont’d

• Right-click the Value output of
the Button Express VI and
select Create>>Indicator to
create a Boolean indicator for
the user button. The TRUE
and FALSE states of the
Boolean indicator represent
the ON and OFF states of the
user button.

• Rename the indicator as
Button.

• (Optional) Add error checking
for the Button Express VI.

Part 4: Cont’d

• Press <Ctrl-E> to switch to
the front panel and click
Run.

• Press the user button on the
NI myRIO and observe the
state change of the Button
indicator.

• Click Stop.
• Click File>>Save.

Good job! You have successfully created a myRIO project and
tested all the NI myRIO onboard devices. You're ready to get
started creating applications of your own!

• Helpful resources

• myRIO Module Help
• You can access this help file by selecting Help»LabVIEW Help from

LabVIEW.

• Templates and Sample Projects
• You can customize templates and sample projects according to the

needs of your application. In LabVIEW, select File»Create Project to
display the Create Project dialog box. Look for the templates and
sample projects under the myRIO categories.

Tutorial: Photo Cell Demo

Part 3
NI myRIO Examples using Control Design and Simulation

Toolkit

Introduction

• Control design is a process that involves developing
mathematical models that describe a physical
system, analyzing the models to learn about their
dynamics characteristics, and creating a controller to
achieve certain dynamic characteristics.

• Control systems are traditionally modeled as block
diagrams.

Introduction

• CD&SIM contains a control and simulation loop,
which is essentially a while loop with additional
functionality for controls running in the background,
including various ODE solvers.
 • Once a controller

has been analysed
in simulation, the
simulated plant can
be replaced with
actual I/O pins.

Example 1: RC Circuit Modeling and
Simulation

NI myRIO Examples using Control Design and Simulation
Toolkit

Develop a simulated control system that executes
on the development machine

• Create a simple PI controller to control a voltage
across the capacitor.

• We will model the RC circuit using a simple 1st order
transfer function.

• The input is u(t) and the output is y(t).
• RC circuit time constant = 2.5.

Steps

1. To save time we have provided a starting point for
the application. Select File» Open Project and
navigate to L\ME360\Section2C\Lecture\LabVIEW
Lecture\Lecture 3\RC circuit\RC circuit.vi.

2. This will execute the VI on the development
machine rather than the myRIO.

3. To execute on the myRIO, select File>> RC
circuit.lvproj when the myRIO is connected to the
computer machine using USB cable.

Front panel and Block diagram

Steps

• The application is now complete. Save the
application, switch to the front panel, and click Run.
Remember that this application is now running on
the host processor.

• While the application is executing, try interacting
with the set point control and experimenting with
the control gain values.

Results

Results

Develop a simulated control system that executes
on the myRIO processor

• Select File» Open Project and
navigate to
L\ME360\Section2C\Lecture\Lab
VIEW Lecture\Lecture 3\RC
circuit\RC circuit.lvproj.

• Right click on myRIO to connect.
• Double click on RC circuit.vi to

deploy the code on myRIO
processor.

Example 2: DC Motor Simulation
Control using PID

NI myRIO Examples using Control Design and Simulation
Toolkit

PID Control

• Proportional Integral Derivative (PID) is one of the most
commonly used control algorithms due its ease of use
and minimal required knowledge of the system or plant
to be controlled.

• National Instruments provides ready-to-run, advanced
(PID) control algorithms with the NI LabVIEW PID Control
Toolkit. Combined with the LabVIEW Control Design &
Simulation Module, the LabVIEW PID Control Toolkit can
help you simulate and tune your PID controllers without
implementing them in real-world systems, thus avoiding
possible problems such as instability during application
development.

Objective

• In this tutorial, learn how to use the LabVIEW PID
Control Toolkit with the LabVIEW Control Design &
Simulation Module and design the PID gains for the
position controller of a DC motor in a Real-Time
system.

DC Motor Modeling

• In this tutorial, we will design the velocity controller
for a DC motor. For the sake of simplicity consider a
basic transfer function for a DC motor where effects
such as friction and disturbances are being
considered:

DC Motor Modeling

• Where
• Ф(s) is the angular velocity (rad/sec)
• V(s) is applied voltage (V)
• J is the rotor inertia (9.64E-6)
• R is the rotor resistance (3.3 Ώ)
• K is the torque constant (0.028 N-m\A)
• L is the Inductance (4.64E-3 H)
• B is the Friction Torque Constant (1.8E-6 N-m-s)

DC Motor Modeling

• If you replace the numeric values, you get the
following transfer function:

• Your goal is to implement a PID algorithm that is
going to run on a Real-Time controller with a loop
rate of 1000 Hz (0.001 second period).

Step 1

• Start by opening the LabVIEW Development
Environment and navigating to the Block Diagram.
On the Functions Palette, select Control Design &
Simulation->Simulation->Control & Simulation Loop
then click and drag to size and create a Control &
Simulation Loop.

Step 2

• Again on the Simulation subpalette,
select Continuous Linear Systems
and click once on Transfer Function
and once inside the Control &
Simulation Loop you created
previously. This places a Transfer
Function block inside the Control &
Simulation Loop. Now double-click
on the Transfer Function block to
input the transfer function
parameters.

Step 3

Step 4: Implement the PID algorithm

• On the function palette, select the Control
Design & Simulation->PID subpalette and
drag and drop the PID.vi into the Control &
Simulation Loop.

• Because the PID algorithm is going to run on
a Real-Time based operating system with a
fixed loop rate, right-click on the PID.vi and
select SubVI Node Setup…. to bring up a
configuration dialog window.

• You can use this window to configure the
simulation loop to handle timing with this
particular VI.

• Assume the controller is going to run at a
1000 Hz loop rate, so select discrete with a
period value of 0.001 seconds.

Step 4: Implement the PID algorithm

• The “D” that appears on the PID VI indicates that it is being
handled as a discrete system.

• Run the cursor over the PID VI until you are on top of the PID
Gains Terminal (you might type CTRL+H to Show Context Help
if you cannot find it). Right-click and select Create->Control.
This creates a control on the Front Panel that you can use to
change the PID gains interactively. Finally, right-click on the
dt(s) terminal and create a constant. This should be the same
as the digital period you created previously, 0.001 seconds.

• To create an input signal, use a step signal. From Control
Design & Simulation->Simulation->Signal Generation, select
Step Signal and drop it into the simulation loop. Leave
parameters as they are configured by default.

Step 4: Implement the PID algorithm

Step 5: View Simulation Results

• First bundle the input (Step Signal) with the output from
the motor transfer function into a Build Array node,
which you can find on the Programming->Arrays
subpalette.

• Collect these signals and plot them on a graph on the
Front Panel.

• To do so, select Control Design & Simulation->Simulation-
>Utilities then select and drop Collector.

• On the Front Panel, create an XY Graph to display the
simulation results.

• Connect all the signals as shown in Figure 5.

Step 6: Simulation loop

Step 6: Front Panel

• If you rearrange the Front Panel elements and use
the default values, you will end up with a graph
similar to Figure 6:

Step 7: Fine-Tune the Simulation

• Use LabVIEW native
graphical capabilities to
improve the simulation
and fine-tune the PID
gains.

• First, change axis
properties to have a better
view of the simulation
results. Right-click on the
border of the XY Graph
and uncheck the AutoScale
X property under the X
Scale option

Step 8: Configure Simulation Parameters

• Before making changes to the PID
controller, we will make the
simulation more efficient. As seen
on Figure 6 there is no need to
simulate the default 10 seconds;
the plant is fast enough so that a
final simulation time of 2 seconds
is enough. Now modify the
simulation parameters by double-
clicking on the Control &
Simulation Loop configuration
pane which calls up the Configure
Simulation Parameters dialog
window. Implement the
parameters as shown in Figure 8.

Step 9: PID Tuning
• You now can run the VI continuously and change the PID gains until you are satisfied

with the results.
• A typical procedure to tune a PID controller would be
1. Kc to 1 and Ti, Td to zero. Keep increasing/decreasing Kc until the response has
some overshoot
2. Modify Td to make the system faster and compensate the overshoot
3. Modify Ti to remove any steady-state error on the step response

Conclusion

• You now know how to simulate a discrete-based PID
controller with the continuous dynamic system
behavior of a DC motor. You can apply this technique
to any kind of hybrid system where continuous and
discrete behavior is mixed. One of the benefits of the
procedure shown is that the control algorithm you
used is exactly the same as the one you would use in
a Real-Time implementation, and you can take
advantage of many of its features, such as integral
anti windup.

THANK YOU
Questions..?!

	LabVIEW & NI myRIO
	Part 1
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Front Panel Toolbar
	Front Panel Controls and Indicators
	Slide Number 8
	Block Diagram Toolbar
	Block Diagram
	Slide Number 11
	Block Diagram
	Common Data Types Found in LabVIEW
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Data Flow
	Tutorial 1: Simple Algebraic Equation
	Tutorial 2: Simple Algebraic Equation
	Tutorial 3: Parallel Computations
	Tutorial 4: Loops
	Tutorial 5: Case Statements
	Tutorial 6: Push button Counter
	Tutorial 7: Control & Simulation Module
	Tutorial 8: Differential Equations
	Part 2
	The Problem
	The Solution
	What is NI myRIO
	NI myRIO
	Additional Features
	NI myRIO Expansion Port (MXP)
	miniSystems Port (MSP)
	RT Template VI
	Express VIs to Advanced VIs Open Source
	NI myRIO Palette
	Connecting myRIO to your Computer
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Start my first project now [Recommended]
	Choose Environment Settings
	Part 1: Creating a myRIO Project
	Part 1: Cont’d
	Part 1: Cont’d
	Part 1: Cont’d
	Part 2: Testing the Accelerometer
	Part 2: Cont’d
	Part 2: Cont’d
	Part 2: Cont’d
	Part 3: Testing the LEDs
	Part 3: Cont’d
	Part 3: Cont’d
	Part 3: Cont’d
	Error checking in LabVIEW
	Part 4: Testing the Button
	Part 4: Cont’d
	Part 4: Cont’d
	Part 4: Cont’d
	Good job! You have successfully created a myRIO project and tested all the NI myRIO onboard devices. You're ready to get started creating applications of your own!
	Tutorial: Photo Cell Demo
	Part 3
	Introduction	
	Introduction
	Example 1: RC Circuit Modeling and Simulation
	Develop a simulated control system that executes on the development machine
	Steps
	Front panel and Block diagram
	Steps
	Results
	Results
	Develop a simulated control system that executes on the myRIO processor
	Example 2: DC Motor Simulation Control using PID
	PID Control
	Objective
	DC Motor Modeling
	DC Motor Modeling
	DC Motor Modeling
	Step 1
	Step 2
	Step 3
	Step 4: Implement the PID algorithm
	Step 4: Implement the PID algorithm
	Step 4: Implement the PID algorithm
	Step 5: View Simulation Results
	Step 6: Simulation loop
	Step 6: Front Panel
	Step 7: Fine-Tune the Simulation
	Step 8: Configure Simulation Parameters
	Step 9: PID Tuning
	Conclusion
	THANK YOU

