[image: image35.jpg] MCCCD High Tech Workforce Initiatives / MATEC NetworkS
[image: image34.png]

Programmable Logic Devices: Simulation Lab 1

Acknowledgements: Developed by Bassam Matar, Engineering Faculty at Chandler-Gilbert Community College, Chandler, Arizona. Funded by NSF
Lab Summary: This lab will present design entry, simulation, and prototyping with tools that are provided by Xilinx® ISE 9.1i for this purpose. We will show how a complete simple design circuit of the half adder can be directly entered into Xilinx® ISE 9.1i for synthesis, post synthesis simulation and timing analysis. Also, the design and creation of Half Adder symbol will be explained. We will show the implementation of more complex designs in future labs by running them through the design flow illustrated in this lab.

Lab Goal: The goal of this lab is to learn the use of using Xilinx® ISE 9.1i software by designing the circuits for a half adder its device and a 4-bits incrementer and its device.

Learning Objectives

1. Create a half adder project in Xilinx® ISE 9.1i using the free software ISE WebPACK.

2. Use the Xilinx® ISE 9.1i Schematic Editor to enter a graphical design in Xilinx® ISE 9.1i.

3. Compile and simulate the half adder design.

4. Create, compile, and simulate a half adder symbol in Xilinx® ISE 9.1i

5. Design the circuit for incrementer-4 using the half adder symbol

6. Create, compile, and simulate an incrementer-4 symbol using Xilinx® ISE 9.1i.
7. Use the Incrementer–4 to find Two’s complement representations.

Grading Criteria: Your grade will be determined by your instructor based on completion of the above learning objectives and perform the assigned problems at the end of the lab.

Time Required: 3 - 4 hours

Lab Preparation

· Read lab 0 “How to use Xilinx ISE 9.1i”

· Read this document completely before you start on this experiment.

· Print out the laboratory experiment procedure that follows.

Equipment and Materials

Each team of students will need the following items as specified below. Students should work in teams of two.

	Test Equipment and Power Supplies
	Quantity

	The following items from the Xilinx: www.xilinx.com

· free software ISE WebPACK
	1

Additional References:

1. Xilinx ISE 9.1i Software manuals found on Xilinx web site: www.xilinx.com

Introduction

This is the first of four simulation labs required for creating a microprocessor project. Simulation lab 1 is completed in this module and a separate handout for simulation lab 2, lab 3 and 4. You will advance from knowing very little about digital design and the use of Xilinx ISE 9.1i software to the point where you can build a microprocessor and understand some of its fundamental principles.

In simulation lab 1, you will combine simple Boolean gates to form larger, more useful circuits. In Simulation lab 2, you will systematically design some other elementary functions into circuits built from basic gates and devices that you have created in simulation lab 1. In simulation lab 3, you will combine the circuits built in simulation lab 1 and 2 to form an Arithmetic Logic Unit (ALU) that will handle all the data manipulation operations in a microprocessor. In Simulation lab 4, you will add in memory and show how the memory can be linked to an ALU to perform actions on stored data such as addition, subtraction, and some logic operation. The resulting circuit is a working microprocessor.

Simulation Lab 1

In this lab, you will first load and license the Xilinx® ISE 9.1i using the free software ISE WebPACK. Then you will be given some small circuits of limited functionality and shown how they can be used to construct bigger circuits of greater functionality. This is one of the most important ideas of digital logic design.

Basic Arithmetic Functions

The three basic logic gates (AND, OR, and NOT) that you studied in your class perform the basic functions of Boolean logic. Computers need to do other operations as well. Now, we will provide you with circuits, built using the basic Boolean gates that perform some commonly encountered operations. These circuits even have names because they are used so frequently.

In this module, we will use the half adder, full adder and increment circuits as the basis for arithmetic.

· The half adder adds two binary inputs but does not have a carry input.

· The full adder has two numbers and a 1-bit carry as inputs, and a single number and 1-bit carry as outputs. It adds the two input numbers and the carry to get the single sum result and carry out. Two simpler circuits can be built that resemble a full adder with some missing input or output.

· The increment is also similar to the full adder but is missing one of the two number inputs. As its name implies, the increment is useful when you may want to add 1 to a number. To do this, you just set the carry into a 1.

In this stage, we will build, test, and store some basic circuits for performing arithmetic. These circuits are the very simple. Circuits that are more complicated can be built using these two circuits as building blocks. Therefore, we first need working copies of the simple circuits. Below are the circuits you should enter into Xilinx® ISE 9.1i and the truth table of the circuits. The circuit is shown on the next page. We will write a (1) after the names of each of these devices to indicate that these are the 1 bit (hence 1) version of them. We will develop circuits in Simulation Lab 2 in order to control the flow of data throughout the system.

[image: image1.png]
HALF ADDER 1:

	INPUTS
	OUTPUTS

	 A
	B
	Sum
	Cout

	0
	0
	0
	0

	0
	1
	1
	0

	1
	0
	1
	0

	1
	1
	0
	1

	
	
	
	

[image: image34.png]
[image: image38.emf]Binary Number = 0 1 0 1

1's Complement = 1 0 1 0

0101

0101

0101

Half-Adder Circuit

In the above circuit, we show a box with input and output pins. These devices are the basis for our hierarchical design approach. They allow us to suppress the detail of how the circuits work and just describe the function. The box alone is a much simpler appearing object than the associated circuits of Boolean gates. Therefore, the first thing that we need to do in this lab is to use Xilinx® ISE 9.1i to build the Boolean gate circuits. The second thing we will do is put these circuits into the appropriately labeled box. In other words, we want to build each of the circuits above, test them according to their truth tables to see if they work, and then put the circuit inside their box (picture). This becomes absolutely necessary if we want to keep track of what we are doing in the larger circuit.

Lab Procedure: Building the HALF ADDER 1

Xilinx Design process:

[image: image35.jpg]Step 1: Design Entry

· Two design methods: HDL (Verilog or VHDL) or schematic drawings.

For our class, we will use schematic method.

Step 2: Design Synthesis

· Translate V, VHDL and schematic files into an industry standard format EDIF file.

Step 3: Design Implementation

· Translate Map, Place and Route. This process will generate a configuration file (.JED) for CPLD programming.
Step 4: Xilinx Device Programming

· Download JED file into CPLD
In this portion of the lab, you will use Xilinx ISE 9.1i Software to build the HALF ADDER-1 circuit. The steps involved are design entry, synthesis, implementation, and programming.

NOTE: At the conclusion of the lab, you will be asked to comment on why certain steps are required. Be sure to take notes on these questions as they appear in the lab procedure.

Design Entry Instructions

1. Open Xilinx ISE 9.1 edition software

a. Select Start

b. All Programs

c. Xilinx ISE 9.1 edition

d. Project Navigator

Or double click on the desktop icon:

[image: image2.wmf]Xilinx ISE 9.1i.lnk

Please read the instruction in lab 0 “How to use Xilinx ISE 9.1i” on how to create the Half_Adder schematic.

[image: image3.png]
Below is the waveform that you should get for the appropriate values of inputs A and B. You can arrange the inputs and outputs waveform by clicking on the variable and move it to the appropriate place.

[image: image4.png]
As expected, the results match our truth tale:

	INPUTS
	OUTPUTS

	A
	B
	Sum
	Cout

	0
	0
	0
	0

	0
	1
	1
	0

	1
	0
	1
	0

	1
	1
	0
	1

Creating a Half_Adder symbol:

We want to be able to put the circuit into a “black box” or icon and still be able to see the internal guts of it. It will be stored in two forms: once as a box and once as a circuit. The procedure for putting the circuit in a box is summarized below:

The first thing that is needed is to make your circuit an element of a larger circuit by developing a picture of what it should look like.

The picture should follow some requirements, such as:

1. The picture needs to identify your circuit well, so you do not forget what it is;

2. It needs to be as compact as possible, so it doesn't use too much valuable screen space;

3. It would be nice if the picture adhered to some sort of standard, so other people could look at the picture and know what kind of circuit it is;

4. Your picture should also have line spacing compatible with Xilinx, so the pins that you have pictured coming out of the device are able to connect smoothly with Xilinx lines.

10. Create a basic default symbol by expanding Design Utilities and double click on “Create Schematic Symbol”
[image: image5.png]
Figure 1

The symbol will be created, and the following message will be displayed at bottom of the page:

Started : "Create Schematic Symbol".

Process "Create Schematic Symbol" completed successfully

Another way to create Half_Adder symbol is by selecting Symbol Wizard from main menu Tools:

[image: image6.png]
Figure 2

Select Using Schematic and Half_Adder is selected as shown below and click next

[image: image7.png]
Figure 3

Arrange your inputs/outputs as shown below by clicking on the order tab and change the numbers. (A input is pin 1, B input is pin 2, Sum is output pin 1 and Cout is output pin 2).

[image: image8.png]
Figure 4

Resize the symbol shape with the following numbers as shown below and click Next

[image: image9.png]
Figure 5

You symbol should look like this:

[image: image10.png]
You can see your symbol by following the same process of locating any other symbols that you already did. Just type Half_Adder in the Symbol box after tapping the half adder button.

Building a 4-bit INCREMENTER

Another arithmetic operation is the INCREMENT operation, where we increase the input by 1. A Half_Adder actually is an Incrementer, with the carry input, serving as a control input bit which tells the circuit whether or not to increment the number. There is a one bit output and a carry output. Similarly, a 2-bits Incrementer can be formed out of two Half_Adder’s as follows:

[image: image11.png]
In a similar fashion we can use four half adders to form a 4 bits Incrementer. A 4-bits

Incrementer should have one four-bit binary number and a carry as input. It should also have one four-bit binary number and a carry as output. If the input carry is low, the output number will be the same as the input number. If the input carry is high, the output will be more than the input.

This is an excellent example of how we create and build a larger circuit from a smaller one.

Build a 4 Bits- Incrementer

Start a new project as discussed (lab 0) before. Type Incrementer as the name of the project, and Add Source Half_Adder to your project as shown below

[image: image12.png]
Figure 6

You should have the following figure once you finish:

[image: image13.png]
Figure 7

IMPORTANT:

TO HAVE THE HALF ADDER Symbol TO SHOW IN YOUR LIBRARY OF SYMBOLS, YOU NEED TO OPEN HALF ADDER PROJECT IN YOUR INCREMENTER4 PROJECT.

Start the 4 bits incrementer by placing 4 Half_Adder and connect the output Cout to the B input of the following Half_Adder as shown below:

[image: image14.png]
Creating a Bus

We will learn on how to create a bus for Incrementer 4 bus.

What is a bus?

A collection of wires through which data is transmitted from one part of a computer to another. You can think of a bus as a highway on which data travels within a computer. When used in reference to personal computers, the term bus usually refers to internal bus. This is a bus that connects all the internal computer components to the CPU and main memory. There's also an expansion bus that enables expansion boards to access the CPU and memory.

All buses consist of two parts -- an address bus and a data bus. The data bus transfers actual data whereas the address bus transfers information about where the data should go.

The size of a bus, known as its width, is important because it determines how much data can be transmitted at one time. For example, a 16-bit bus can transmit 16 bits of data, whereas a 32-bit bus can transmit 32 bits of data.

For incrementer 4 we need to create a 4-bits bus for inputs A(3:0) and outputs Y(3:0).

The incrementer will also have a single input INC (Incrementer) and single output COUT (Carry-Out).

To Create both buses, perform the following steps:
1.Select Add > Wire or click the Add Wire icon [image: image15.png] in the Tools toolbar and draw two wires one on the left of the schematic and one on the right as shown below:

[image: image16.png]
Figure 8

2. Select one wire and right click the mouse and select “Rename Selected Net…” as shown below:

[image: image17.png]
Figure 9

Rename the wire A(3:0) and click OK as shown below:

[image: image18.png]
Figure 10

Repeat the same process for the output Y(3:0).

Your vertical wires (now buses) should be similar to the ones shown below:

[image: image19.png]
Figure 11

Adding Bus Taps

Use Bus Taps to tap off a single bit of a bus and connect it to another component.

Note: Zooming in on the schematic enables greater precision when drawing the nets.

To tap off a single bit of each bus:

1. Select Add(Bus Tap or click the Add Bus Tap icon in the Tools toolbar.

[image: image36.png][image: image20.png]
The cursor changes, indicating that you are now in Draw Bus Tap mode.

2. From the Options tab to the left of the schematic, choose the <-- Left orientation for the bus tap A(3:0) and then choose --< right orientation for the output Y(3:0) as shown below:

[image: image21.png]
Figure 12

Now, using wire icon [image: image22.png] Connect the buses to the appropriate input and output as shown below:

[image: image23.png]
Figure 13

3. Select one wire and right click the mouse and select “Rename Selected Net…” as shown below. Make sure you select the option of Display the Net Name on the …

[image: image24.png]
Figure 14

Below is what the 4 bits incrementer should look like once you label all inputs and outputs and add I/O makers for the “A(3:0) ,Y(3:0) CIN and COUT”:

[image: image25.png]
Figure 15

Check your schematic for errors and save it.

Test your circuit by creating a test wave form as we did for the half_adder.

Note: Make sure you add incrementer project to your design before you create your test waveform.

[image: image26.png]
For the A’s inputs use the following pattern:

[image: image27.png]
Figure 16

For Cin input use the following pattern:

[image: image28.png]
Figure 17

Now, as we did before with the Half_Adder Waveform, double click on Simulation Behavior Model in the process panel as shown below:
[image: image29.png]
Figure 18

4-bits Incrementer Waveform:

[image: image30.png]
As you can see form the waveform, when Cin =0, A[3:0] = Y[3:0]. When Cin =1, you increment the input by 1. Y[3:0]=A[3:0]+1

Creating the 4 bits Incrementer Symbol:

We want to be able to put the circuit into a “black box” or icon and still be able to see the internal guts of it. Please refer to previous procedure on how to create a symbol.

Your symbol should be similar to this:

[image: image31.png]
Using the INCREMENT–4 to find Two’s Complement Representations

The 1’s and 2’s complement of a binary number are important because they permit the representation of negative numbers. The method of 2’s complement arithmetic is commonly used in computers to handle negative numbers. 2’s complement is calculated by finding 1’s complement of a number and 1 to it. The 1’s complement of a binary number is found by simply inverting all the binary numbers. This is done by changing them from 1’s to 0’s or from 0’s to 1’s as shown in this example.

[image: image37.png]
The 2’s Complement of a binary number is simply found by adding 1 to the Least Significant Bit (LSB) of the 1’s complement.

2’s Complement = (1’s Complement + 1)

Example:

2’s Complement of the above binary number (0101) is:

1 0 1 0
1’s Complement

 + 1

1 0 1 1
2’s Complement

The following circuit should do a two's complement of a binary number:

[image: image32.png]
Figure 19

Note that by connecting INC to VCC, INC is always a 1.

1. Build the circuit in Xilinx® ISE 9.1i and test whether it really performs a two's complement. It is up to you to decide what a good test is but be sure to record the details of your tests. You will use a similar circuit for two's complement toward the end of the lab.

Here is a possible layout of your input/output:

[image: image33.png]
Questions (Instructor Version):

1. Use the timing analysis of the half adder that you have created in the this lab to fill up the following truth table:

	INPUTS
	OUTPUTS

	A
	B
	SUM
	CRY

	0
	0
	
	

	0
	1
	
	

	1
	0
	
	

	1
	1
	
	

	INPUTS
	OUTPUTS

	A
	B
	SUM
	CRY

	0
	0
	0
	0

	0
	1
	1
	0

	1
	0
	1
	0

	1
	1
	0
	1

Answer

2. Switch the inputs on the trainer for the Half-Adder where input A is attached to pin 56 and the B input to pin 54. Verify the truth table of the Half-Adder.

Answer
No Changes. You should get the same outputs as before

3. Use the incrementer-4 device or circuit to find the One’s complement of the following Hexadecimal numbers:

 HEX:
Binary
a. A 1010

b. F 1111

c. C 1100

d. 7 0111

Answers

 HEX:

Binary
a. 5

 0101

b. 0 0000

c. 3 0011

d. 8 1000

4. Use the incrementer-4 device or circuit to find the two’s complement of the following Hexadecimal numbers:

a. A

b. F

c. C

d. 7

Answers

HEX:

Binary
a. 3

 0110

b. 1 0001

c. 4 0100

d. 9 1001

Use the rest of the page for your observation of how the Half-Adder is programmed using a PLD. Be sure to note components that are used and answer the questions asked during the lab.

Half-Adder Box

�

�

PAGE
23

