Syllabus: Welding Metallurgy and Material Testing, WELD 1410 Part 1: Course Information

Description

The course is designed for students with experience in welding but little or none in the principles of metallurgy. The course begins at the atomic level with atomic bonding, defects in metal crystals and moves to the evolution of weld microstructure in the fusion and heat- affected zones of aluminum alloys. Welding parameters are correlated to these zones and related to tensile properties, microhardness, and weld integrity.

The microstructure of aluminum welds will be revealed in the laboratory using standard metallographic techniques. Defects such as extraneous particles, porosity, and flaws (such as cracking) will be noted and recorded digitally in micrographs (pictures). Digital recording and analysis of the weld microstructures will be accomplished with an upright metallurgical microscope. Microhardness measurements will be made across each weld zone using a microhardness tester. The microstructure of the aluminum alloy welds will finally be related to welding parameters and weld integrity.

This course is designed to meet over a period of 14 weeks, 1 meetings per week, and 3 hours per meeting in a combined lecture-lab meeting.

Prerequisites None

Required Materials

Graphic Slides taken from the internet course on welding aluminum alloys: www.nrc.gov/docs/ML1215/ML12157A607.pdf

Pace Technologies "Metallographic Handbook" by Donald C. Zipperian, PhD, Copyright 2011

Recommended Reference Materials

Tools to be used For list of equipment, see Lab Manual.

Center for Advanced Automotive Technology c A A T

Part 2: Course Learning Outcomes (CLOs)

The course learning outcomes are to have students:

- 1. Describe basic physical metallurgy starting at the atomic level, with bonding, defect structure, phase diagrams and diffusion and moves towards the development of metal microstructure.
- 2. Describe how metals solidify, how phases nucleate and grow, and the mechanisms by which metal alloys are strengthened. Describe the development of the fusion and heat-affected zones during the welding of aluminum.
- 3. Describe how weld variables such as pool shape, travel speed, cooling rate and other variables affect the subsequent weld microstructure.
- 4. Determine how the weld variables and weld microstructure affect the mechanical properties of the weld will be able to identify the microstructure of acceptable welds.
- 5. Prepare metallographic samples of aluminum alloy welds in the laboratory to reveal their microstructure. Measure and interpret the microhardness across a weld.

Part 3: Course Topics and Roadmap

Roadmap

The following roadmap is recommended for instructors

Week	• Lecture Topics • CLOs	Main Concepts, Terms, and Skills	 Course Materials, Homework & Projects
1	Basic Principles1	Types of Atomic BondsMetallic BondingElastic Modulus	Slides 1-6
2	Crystal Structure	Defects in Metals	Slides 7-13

	& Defects	Solid Solutions	Quiz
	• 1	Line & Planar Defects	
3	 Phase Diagrams 	 Types of Phase diagrams 	Slides 14-20
	• 1-2	Microstructural Evolution	
4	Diffusion	Diffusion in Metals	Slides 21-24
	• 2	 Interdiffusion of 2 Metals 	Summary M-1
		Diffusion in Weld Zones	Test #1
5	 Strengthening 	 Solid Solution strengthening 	Slides 25-36
	mechanisms	Strain Hardening	
	• 2	Precipitation Hardening	
6	Basic of Welding	Microstructure & Properties	Slides 37-45
	Metallurgy	Metallurgical Processes	
	• 2-3	The Fusion Zone	
7	 Dilution 	Calculation of Dilution	Slides 46-52
	• 2	Dilution in Aluminum Alloys	Summary M-2
			Test #2
8	Fusion Zone	Surface Tension/Fluid Flow	Slides 53-61
	• 2-3	 Types of Nucleation 	
		Heterogeneous Nucleation	
		Epitaxial Nucleation at Fusion Boundary	
9	 Welding 	Effect of Travel Speed	Slides 62-68
	Parameters	Effect of GL, R, and Composition	
	• 3 - 4	Effect of Cooling Rate	
		Weld Metal Epitaxial Nucleation	
10	 Fusion Zone 	Solidification Grain & Subgrain Boundaries	Slides 69-75
	 Boundaries 	Migrate Grain Boundary	Summary M-3
		Partially Melted Zone (PMZ)	Test #3
11	Microstructure/	Microstructure of 6061-T6 Aluminum Alloy	Slides 76-83
	Mechanical Prop	Unmixed Zone (UMZ)	
	• 4-5	Partially Melted Zone (PMZ)	
12	Boundaries in	Grain Boundary Liquation in the PMZ	Slides 84-92
	Weld Zone	The "True" Heat Affected Zone (HAZ)	
	• 4-5	Effect of Recrystallization on Mech. Properties	
13	Residual	Factors Influencing Residual Stresses	Slides 93-98
	Stresses	Fundamental Types of Distortion	
	• 4	Microhardness Testing	
14	Mechanical	Tensile Testing Welds	Slides 99-106
	lesting of Welds	Stress-Strain Curves	Summary IVI-4
	• 4-5	Bend Tests	rest #4
		Fractography	

Center for Advanced Automotive Technology

Part 4: Grading and Assessment

Graded Assignments

Four Module Tests are included as separate documents. Lab reports with template and description of the course project are included in the lab manual.

Proposed Grading Schedule

\triangleright	Module Tests (4)	60%
\triangleright	Lab Reports (14)	20%
\triangleright	Course Project (1)	20%

Part 5: Notes to Program Administrators

Resources

Abrasive Cutter (e.g., MEGA M250) Specimen Mounting Press (e.g., TERA Press TP 7001) Grinder/Polisher (e.g., NANO 1000T) Inverted Metallurgical Microscopes (e.g., IM 3000) Microhardness Tester (e.g., HV-1000Z) Universal Testing Machine Fumehood and Sinks (for etching) Optional: Scanning Electron Microscope

Class requires use of Keller's Solution. Please verify safe handling instructions of this reagent with the EHS Officer.

Instructor Qualification

- Bachelor's or higher degree in a qualifying field or
- Bachelor's or higher degree in any discipline and certifying credentials:
 - 30 undergraduate hours or 18 graduate hours of coursework in a qualifying field, or
- Bachelor's or higher degree with relevant supplemental experiential experience:
 - Two years professional employment or
 - Research or publications, or
- A.A.S. in a qualifying discipline and four years of relevant professional employment

Qualifying fields:

Metallurgical Engineering Mechanical Engineering Construction Technology Quality Assurance/Quality Control Technology

Prepared by

Dave Braski, Roane State Community College

Center for Advanced Automotive Technology