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Preface
Why a New Physics Textbook?

We Americans assume that our economic system will always scam-
per to provide us with the products we want. Special orders don’t
upset us! I want my MTV! The truth is more complicated, espe-
cially in our education system, which is paid for by the students
but controlled by the professoriate. Witness the perverse success
of the bloated science textbook. The newspapers continue to com-
pare our system unfavorably to Japanese and European education,
where depth is emphasized over breadth, but we can’t seem to cre-
ate a physics textbook that covers a manageable number of topics
for a one-year course and gives honest explanations of everything it
touches on.

The publishers try to please everybody by including every imag-
inable topic in the book, but end up pleasing nobody. There is wide
agreement among physics teachers that the traditional one-year in-
troductory textbooks cannot in fact be taught in one year. One
cannot surgically remove enough material and still gracefully nav-
igate the rest of one of these kitchen-sink textbooks. What is far
worse is that the books are so crammed with topics that nearly all
the explanation is cut out in order to keep the page count below
1100. Vital concepts like energy are introduced abruptly with an
equation, like a first-date kiss that comes before “hello.”

The movement to reform physics texts is steaming ahead, but
despite excellent books such as Hewitt’s Conceptual Physics for non-
science majors and Knight’s Physics: A Contemporary Perspective
for students who know calculus, there has been a gap in physics
books for life-science majors who haven’t learned calculus or are
learning it concurrently with physics. This book is meant to fill
that gap.

Learning to Hate Physics?

When you read a mystery novel, you know in advance what structure
to expect: a crime, some detective work, and finally the unmasking
of the evildoer. Likewise when Charlie Parker plays a blues, your ear
expects to hear certain landmarks of the form regardless of how wild
some of his notes are. Surveys of physics students usually show that
they have worse attitudes about the subject after instruction than
before, and their comments often boil down to a complaint that the
person who strung the topics together had not learned what Agatha
Christie and Charlie Parker knew intuitively about form and struc-
ture: students become bored and demoralized because the “march
through the topics” lacks a coherent story line. You are reading the
first volume of the Light and Matter series of introductory physics
textbooks, and as implied by its title, the story line of the series
is built around light and matter: how they behave, how they are
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different from each other, and, at the end of the story, how they
turn out to be similar in some very bizarre ways. Here is a guide to
the structure of the one-year course presented in this series:

1 Newtonian Physics Matter moves at constant speed in a
straight line unless a force acts on it. (This seems intuitively wrong
only because we tend to forget the role of friction forces.) Material
objects can exert forces on each other, each changing the other’s
motion. A more massive object changes its motion more slowly in
response to a given force.

2 Conservation Laws Newton’s matter-and-forces picture of
the universe is fine as far as it goes, but it doesn’t apply to light,
which is a form of pure energy without mass. A more powerful
world-view, applying equally well to both light and matter, is pro-
vided by the conservation laws, for instance the law of conservation
of energy, which states that energy can never be destroyed or created
but only changed from one form into another.

3 Vibrations and Waves Light is a wave. We learn how waves
travel through space, pass through each other, speed up, slow down,
and are reflected.

4 Electricity and Magnetism Matter is made out of particles
such as electrons and protons, which are held together by electrical
forces. Light is a wave that is made out of patterns of electric and
magnetic force.

5 Optics Devices such as eyeglasses and searchlights use matter
(lenses and mirrors) to manipulate light.

6 The Modern Revolution in Physics Until the twentieth
century, physicists thought that matter was made out of particles
and light was purely a wave phenomenon. We now know that both
light and matter are made of building blocks with a combination of
particle and wave properties. In the process of understanding this
apparent contradiction, we find that the universe is a much stranger
place than Newton had ever imagined, and also learn the basis for
such devices as lasers and computer chips.

A Note to the Student Taking Calculus Concurrently

Learning calculus and physics concurrently is an excellent idea —
it’s not a coincidence that the inventor of calculus, Isaac Newton,
also discovered the laws of motion! If you are worried about taking
these two demanding courses at the same time, let me reassure you.
I think you will find that physics helps you with calculus while cal-
culus deepens and enhances your experience of physics. This book
is designed to be used in either an algebra-based physics course or
a calculus-based physics course that has calculus as a corequisite.
This note is addressed to students in the latter type of course.

Art critics discuss paintings with each other, but when painters
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get together, they talk about brushes. Art needs both a “why”
and a “how,” concepts as well as technique. Just as it is easier to
enjoy an oil painting than to produce one, it is easier to understand
the concepts of calculus than to learn the techniques of calculus.
This book will generally teach you the concepts of calculus a few
weeks before you learn them in your math class, but it does not
discuss the techniques of calculus at all. There will thus be a delay
of a few weeks between the time when a calculus application is first
pointed out in this book and the first occurrence of a homework
problem that requires the relevant technique. The following outline
shows a typical first-semester calculus curriculum side-by-side with
the list of topics covered in this book, to give you a rough idea of
what calculus your physics instructor might expect you to know at
a given point in the semester. The sequence of the calculus topics
is the one followed by Calculus of a Single Variable, 2nd ed., by
Swokowski, Olinick, and Pence.

Newtonian Physics

0-1 introduction review

2-3 velocity and acceleration limits

4-5 Newton’s laws the derivative concept

6-8 motion in 3 dimensions techniques for finding deriva-
tives; derivatives of trigono-
metric functions

9 circular motion the chain rule

10 gravity local maxima and minima

Conservation Laws

1-3 energy concavity and the second
derivative

4 momentum

5 angular momentum the indefinite integral

Vibrations and Waves

1-2 vibrations the definite integral

3-4 waves the fundamental theorem of
calculus
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The Mars Climate Orbiter is pre-
pared for its mission. The laws
of physics are the same every-
where, even on Mars, so the
probe could be designed based
on the laws of physics as discov-
ered on earth. There is unfor-
tunately another reason why this
spacecraft is relevant to the top-
ics of this chapter: it was de-
stroyed attempting to enter Mars’
atmosphere because engineers
at Lockheed Martin forgot to con-
vert data on engine thrusts from
pounds into the metric unit of
force (newtons) before giving the
information to NASA. Conver-
sions are important!

Chapter 0

Introduction and Review

If you drop your shoe and a coin side by side, they hit the ground at
the same time. Why doesn’t the shoe get there first, since gravity is
pulling harder on it? How does the lens of your eye work, and why
do your eye’s muscles need to squash its lens into different shapes in
order to focus on objects nearby or far away? These are the kinds
of questions that physics tries to answer about the behavior of light
and matter, the two things that the universe is made of.

0.1 The Scientific Method
Until very recently in history, no progress was made in answering
questions like these. Worse than that, the wrong answers written
by thinkers like the ancient Greek physicist Aristotle were accepted
without question for thousands of years. Why is it that scientific
knowledge has progressed more since the Renaissance than it had
in all the preceding millennia since the beginning of recorded his-
tory? Undoubtedly the industrial revolution is part of the answer.
Building its centerpiece, the steam engine, required improved tech-
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a / Science is a cycle of the-
ory and experiment.

b / A satirical drawing of an
alchemist’s laboratory. H. Cock,
after a drawing by Peter Brueghel
the Elder (16th century).

niques for precise construction and measurement. (Early on, it was
considered a major advance when English machine shops learned to
build pistons and cylinders that fit together with a gap narrower
than the thickness of a penny.) But even before the industrial rev-
olution, the pace of discovery had picked up, mainly because of the
introduction of the modern scientific method. Although it evolved
over time, most scientists today would agree on something like the
following list of the basic principles of the scientific method:

(1) Science is a cycle of theory and experiment. Scientific the-
ories 1 are created to explain the results of experiments that were
created under certain conditions. A successful theory will also make
new predictions about new experiments under new conditions. Even-
tually, though, it always seems to happen that a new experiment
comes along, showing that under certain conditions the theory is
not a good approximation or is not valid at all. The ball is then
back in the theorists’ court. If an experiment disagrees with the
current theory, the theory has to be changed, not the experiment.

(2) Theories should both predict and explain. The requirement of
predictive power means that a theory is only meaningful if it predicts
something that can be checked against experimental measurements
that the theorist did not already have at hand. That is, a theory
should be testable. Explanatory value means that many phenomena
should be accounted for with few basic principles. If you answer
every “why” question with “because that’s the way it is,” then your
theory has no explanatory value. Collecting lots of data without
being able to find any basic underlying principles is not science.

(3) Experiments should be reproducible. An experiment should
be treated with suspicion if it only works for one person, or only
in one part of the world. Anyone with the necessary skills and
equipment should be able to get the same results from the same
experiment. This implies that science transcends national and eth-
nic boundaries; you can be sure that nobody is doing actual science
who claims that their work is “Aryan, not Jewish,” “Marxist, not
bourgeois,” or “Christian, not atheistic.” An experiment cannot be
reproduced if it is secret, so science is necessarily a public enterprise.

As an example of the cycle of theory and experiment, a vital step
toward modern chemistry was the experimental observation that the
chemical elements could not be transformed into each other, e.g.,
lead could not be turned into gold. This led to the theory that
chemical reactions consisted of rearrangements of the elements in

1The term “theory” in science does not just mean “what someone thinks,” or
even “what a lot of scientists think.” It means an interrelated set of statements
that have predictive value, and that have survived a broad set of empirical
tests. Thus, both Newton’s law of gravity and Darwinian evolution are scientific
theories. A “hypothesis,” in contrast to a theory, is any statement of interest
that can be empirically tested. That the moon is made of cheese is a hypothesis,
which was empirically tested, for example, by the Apollo astronauts.
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different combinations, without any change in the identities of the
elements themselves. The theory worked for hundreds of years, and
was confirmed experimentally over a wide range of pressures and
temperatures and with many combinations of elements. Only in
the twentieth century did we learn that one element could be trans-
formed into one another under the conditions of extremely high
pressure and temperature existing in a nuclear bomb or inside a star.
That observation didn’t completely invalidate the original theory of
the immutability of the elements, but it showed that it was only an
approximation, valid at ordinary temperatures and pressures.

self-check A
A psychic conducts seances in which the spirits of the dead speak to
the participants. He says he has special psychic powers not possessed
by other people, which allow him to “channel” the communications with
the spirits. What part of the scientific method is being violated here?
. Answer, p. 272

The scientific method as described here is an idealization, and
should not be understood as a set procedure for doing science. Sci-
entists have as many weaknesses and character flaws as any other
group, and it is very common for scientists to try to discredit other
people’s experiments when the results run contrary to their own fa-
vored point of view. Successful science also has more to do with
luck, intuition, and creativity than most people realize, and the
restrictions of the scientific method do not stifle individuality and
self-expression any more than the fugue and sonata forms stifled
Bach and Haydn. There is a recent tendency among social scien-
tists to go even further and to deny that the scientific method even
exists, claiming that science is no more than an arbitrary social sys-
tem that determines what ideas to accept based on an in-group’s
criteria. I think that’s going too far. If science is an arbitrary social
ritual, it would seem difficult to explain its effectiveness in building
such useful items as airplanes, CD players, and sewers. If alchemy
and astrology were no less scientific in their methods than chem-
istry and astronomy, what was it that kept them from producing
anything useful?

Discussion Questions
Consider whether or not the scientific method is being applied in the fol-
lowing examples. If the scientific method is not being applied, are the
people whose actions are being described performing a useful human
activity, albeit an unscientific one?

A Acupuncture is a traditional medical technique of Asian origin in
which small needles are inserted in the patient’s body to relieve pain.
Many doctors trained in the west consider acupuncture unworthy of ex-
perimental study because if it had therapeutic effects, such effects could
not be explained by their theories of the nervous system. Who is being
more scientific, the western or eastern practitioners?

Section 0.1 The Scientific Method 21



B Goethe, a German poet, is less well known for his theory of color.
He published a book on the subject, in which he argued that scientific
apparatus for measuring and quantifying color, such as prisms, lenses
and colored filters, could not give us full insight into the ultimate meaning
of color, for instance the cold feeling evoked by blue and green or the
heroic sentiments inspired by red. Was his work scientific?

C A child asks why things fall down, and an adult answers “because of
gravity.” The ancient Greek philosopher Aristotle explained that rocks fell
because it was their nature to seek out their natural place, in contact with
the earth. Are these explanations scientific?

D Buddhism is partly a psychological explanation of human suffering,
and psychology is of course a science. The Buddha could be said to
have engaged in a cycle of theory and experiment, since he worked by
trial and error, and even late in his life he asked his followers to challenge
his ideas. Buddhism could also be considered reproducible, since the
Buddha told his followers they could find enlightenment for themselves
if they followed a certain course of study and discipline. Is Buddhism a
scientific pursuit?

0.2 What Is Physics?
Given for one instant an intelligence which could comprehend
all the forces by which nature is animated and the respective
positions of the things which compose it...nothing would be
uncertain, and the future as the past would be laid out before
its eyes.

Pierre Simon de Laplace

Physics is the use of the scientific method to find out the basic
principles governing light and matter, and to discover the implica-
tions of those laws. Part of what distinguishes the modern outlook
from the ancient mind-set is the assumption that there are rules by
which the universe functions, and that those laws can be at least par-
tially understood by humans. From the Age of Reason through the
nineteenth century, many scientists began to be convinced that the
laws of nature not only could be known but, as claimed by Laplace,
those laws could in principle be used to predict everything about
the universe’s future if complete information was available about
the present state of all light and matter. In subsequent sections,
I’ll describe two general types of limitations on prediction using the
laws of physics, which were only recognized in the twentieth century.

Matter can be defined as anything that is affected by gravity,
i.e., that has weight or would have weight if it was near the Earth
or another star or planet massive enough to produce measurable
gravity. Light can be defined as anything that can travel from one
place to another through empty space and can influence matter, but
has no weight. For example, sunlight can influence your body by
heating it or by damaging your DNA and giving you skin cancer.
The physicist’s definition of light includes a variety of phenomena
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c / This telescope picture shows
two images of the same distant
object, an exotic, very luminous
object called a quasar. This is
interpreted as evidence that a
massive, dark object, possibly
a black hole, happens to be
between us and it. Light rays that
would otherwise have missed the
earth on either side have been
bent by the dark object’s gravity
so that they reach us. The actual
direction to the quasar is presum-
ably in the center of the image,
but the light along that central line
doesn’t get to us because it is
absorbed by the dark object. The
quasar is known by its catalog
number, MG1131+0456, or more
informally as Einstein’s Ring.

that are not visible to the eye, including radio waves, microwaves,
x-rays, and gamma rays. These are the “colors” of light that do not
happen to fall within the narrow violet-to-red range of the rainbow
that we can see.

self-check B
At the turn of the 20th century, a strange new phenomenon was discov-
ered in vacuum tubes: mysterious rays of unknown origin and nature.
These rays are the same as the ones that shoot from the back of your
TV’s picture tube and hit the front to make the picture. Physicists in
1895 didn’t have the faintest idea what the rays were, so they simply
named them “cathode rays,” after the name for the electrical contact
from which they sprang. A fierce debate raged, complete with national-
istic overtones, over whether the rays were a form of light or of matter.
What would they have had to do in order to settle the issue? .

Answer, p. 272

Many physical phenomena are not themselves light or matter,
but are properties of light or matter or interactions between light
and matter. For instance, motion is a property of all light and some
matter, but it is not itself light or matter. The pressure that keeps
a bicycle tire blown up is an interaction between the air and the
tire. Pressure is not a form of matter in and of itself. It is as
much a property of the tire as of the air. Analogously, sisterhood
and employment are relationships among people but are not people
themselves.

Some things that appear weightless actually do have weight, and
so qualify as matter. Air has weight, and is thus a form of matter
even though a cubic inch of air weighs less than a grain of sand. A
helium balloon has weight, but is kept from falling by the force of the
surrounding more dense air, which pushes up on it. Astronauts in
orbit around the Earth have weight, and are falling along a curved
arc, but they are moving so fast that the curved arc of their fall
is broad enough to carry them all the way around the Earth in a
circle. They perceive themselves as being weightless because their
space capsule is falling along with them, and the floor therefore does
not push up on their feet.

Optional Topic: Modern Changes in the Definition of Light and
Matter
Einstein predicted as a consequence of his theory of relativity that light
would after all be affected by gravity, although the effect would be ex-
tremely weak under normal conditions. His prediction was borne out
by observations of the bending of light rays from stars as they passed
close to the sun on their way to the Earth. Einstein’s theory also implied
the existence of black holes, stars so massive and compact that their
intense gravity would not even allow light to escape. (These days there
is strong evidence that black holes exist.)

Einstein’s interpretation was that light doesn’t really have mass, but
that energy is affected by gravity just like mass is. The energy in a light
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d / Reductionism.

beam is equivalent to a certain amount of mass, given by the famous
equation E = mc2, where c is the speed of light. Because the speed
of light is such a big number, a large amount of energy is equivalent to
only a very small amount of mass, so the gravitational force on a light
ray can be ignored for most practical purposes.

There is however a more satisfactory and fundamental distinction
between light and matter, which should be understandable to you if you
have had a chemistry course. In chemistry, one learns that electrons
obey the Pauli exclusion principle, which forbids more than one electron
from occupying the same orbital if they have the same spin. The Pauli
exclusion principle is obeyed by the subatomic particles of which matter
is composed, but disobeyed by the particles, called photons, of which a
beam of light is made.

Einstein’s theory of relativity is discussed more fully in book 6 of this
series.

The boundary between physics and the other sciences is not
always clear. For instance, chemists study atoms and molecules,
which are what matter is built from, and there are some scientists
who would be equally willing to call themselves physical chemists
or chemical physicists. It might seem that the distinction between
physics and biology would be clearer, since physics seems to deal
with inanimate objects. In fact, almost all physicists would agree
that the basic laws of physics that apply to molecules in a test tube
work equally well for the combination of molecules that constitutes
a bacterium. (Some might believe that something more happens in
the minds of humans, or even those of cats and dogs.) What differ-
entiates physics from biology is that many of the scientific theories
that describe living things, while ultimately resulting from the fun-
damental laws of physics, cannot be rigorously derived from physical
principles.

Isolated systems and reductionism

To avoid having to study everything at once, scientists isolate the
things they are trying to study. For instance, a physicist who wants
to study the motion of a rotating gyroscope would probably prefer
that it be isolated from vibrations and air currents. Even in biology,
where field work is indispensable for understanding how living things
relate to their entire environment, it is interesting to note the vital
historical role played by Darwin’s study of the Galápagos Islands,
which were conveniently isolated from the rest of the world. Any
part of the universe that is considered apart from the rest can be
called a “system.”

Physics has had some of its greatest successes by carrying this
process of isolation to extremes, subdividing the universe into smaller
and smaller parts. Matter can be divided into atoms, and the be-
havior of individual atoms can be studied. Atoms can be split apart
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into their constituent neutrons, protons and electrons. Protons and
neutrons appear to be made out of even smaller particles called
quarks, and there have even been some claims of experimental ev-
idence that quarks have smaller parts inside them. This method
of splitting things into smaller and smaller parts and studying how
those parts influence each other is called reductionism. The hope is
that the seemingly complex rules governing the larger units can be
better understood in terms of simpler rules governing the smaller
units. To appreciate what reductionism has done for science, it is
only necessary to examine a 19th-century chemistry textbook. At
that time, the existence of atoms was still doubted by some, elec-
trons were not even suspected to exist, and almost nothing was
understood of what basic rules governed the way atoms interacted
with each other in chemical reactions. Students had to memorize
long lists of chemicals and their reactions, and there was no way to
understand any of it systematically. Today, the student only needs
to remember a small set of rules about how atoms interact, for in-
stance that atoms of one element cannot be converted into another
via chemical reactions, or that atoms from the right side of the pe-
riodic table tend to form strong bonds with atoms from the left
side.

Discussion Questions

A I’ve suggested replacing the ordinary dictionary definition of light
with a more technical, more precise one that involves weightlessness. It’s
still possible, though, that the stuff a lightbulb makes, ordinarily called
“light,” does have some small amount of weight. Suggest an experiment
to attempt to measure whether it does.

B Heat is weightless (i.e., an object becomes no heavier when heated),
and can travel across an empty room from the fireplace to your skin,
where it influences you by heating you. Should heat therefore be con-
sidered a form of light by our definition? Why or why not?

C Similarly, should sound be considered a form of light?

0.3 How To Learn Physics
For as knowledges are now delivered, there is a kind of con-
tract of error between the deliverer and the receiver; for he
that delivereth knowledge desireth to deliver it in such a form
as may be best believed, and not as may be best examined;
and he that receiveth knowledge desireth rather present sat-
isfaction than expectant inquiry.

Francis Bacon

Many students approach a science course with the idea that they
can succeed by memorizing the formulas, so that when a problem
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is assigned on the homework or an exam, they will be able to plug
numbers in to the formula and get a numerical result on their cal-
culator. Wrong! That’s not what learning science is about! There
is a big difference between memorizing formulas and understanding
concepts. To start with, different formulas may apply in different
situations. One equation might represent a definition, which is al-
ways true. Another might be a very specific equation for the speed
of an object sliding down an inclined plane, which would not be true
if the object was a rock drifting down to the bottom of the ocean.
If you don’t work to understand physics on a conceptual level, you
won’t know which formulas can be used when.

Most students taking college science courses for the first time
also have very little experience with interpreting the meaning of an
equation. Consider the equation w = A/h relating the width of a
rectangle to its height and area. A student who has not developed
skill at interpretation might view this as yet another equation to
memorize and plug in to when needed. A slightly more savvy stu-
dent might realize that it is simply the familiar formula A = wh
in a different form. When asked whether a rectangle would have
a greater or smaller width than another with the same area but
a smaller height, the unsophisticated student might be at a loss,
not having any numbers to plug in on a calculator. The more ex-
perienced student would know how to reason about an equation
involving division — if h is smaller, and A stays the same, then w
must be bigger. Often, students fail to recognize a sequence of equa-
tions as a derivation leading to a final result, so they think all the
intermediate steps are equally important formulas that they should
memorize.

When learning any subject at all, it is important to become as
actively involved as possible, rather than trying to read through
all the information quickly without thinking about it. It is a good
idea to read and think about the questions posed at the end of each
section of these notes as you encounter them, so that you know you
have understood what you were reading.

Many students’ difficulties in physics boil down mainly to diffi-
culties with math. Suppose you feel confident that you have enough
mathematical preparation to succeed in this course, but you are
having trouble with a few specific things. In some areas, the brief
review given in this chapter may be sufficient, but in other areas
it probably will not. Once you identify the areas of math in which
you are having problems, get help in those areas. Don’t limp along
through the whole course with a vague feeling of dread about some-
thing like scientific notation. The problem will not go away if you
ignore it. The same applies to essential mathematical skills that you
are learning in this course for the first time, such as vector addition.

Sometimes students tell me they keep trying to understand a
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certain topic in the book, and it just doesn’t make sense. The worst
thing you can possibly do in that situation is to keep on staring
at the same page. Every textbook explains certain things badly —
even mine! — so the best thing to do in this situation is to look
at a different book. Instead of college textbooks aimed at the same
mathematical level as the course you’re taking, you may in some
cases find that high school books or books at a lower math level
give clearer explanations.

Finally, when reviewing for an exam, don’t simply read back
over the text and your lecture notes. Instead, try to use an active
method of reviewing, for instance by discussing some of the discus-
sion questions with another student, or doing homework problems
you hadn’t done the first time.

0.4 Self-Evaluation
The introductory part of a book like this is hard to write, because
every student arrives at this starting point with a different prepara-
tion. One student may have grown up outside the U.S. and so may
be completely comfortable with the metric system, but may have
had an algebra course in which the instructor passed too quickly
over scientific notation. Another student may have already taken
calculus, but may have never learned the metric system. The fol-
lowing self-evaluation is a checklist to help you figure out what you
need to study to be prepared for the rest of the course.

If you disagree with this state-
ment. . .

you should study this section:

I am familiar with the basic metric
units of meters, kilograms, and sec-
onds, and the most common metric
prefixes: milli- (m), kilo- (k), and
centi- (c).

section 0.5 Basic of the Metric Sys-
tem

I know about the newton, a unit of
force

section 0.6 The newton, the Metric
Unit of Force

I am familiar with these less com-
mon metric prefixes: mega- (M),
micro- (µ), and nano- (n).

section 0.7 Less Common Metric
Prefixes

I am comfortable with scientific no-
tation.

section 0.8 Scientific Notation

I can confidently do metric conver-
sions.

section 0.9 Conversions

I understand the purpose and use of
significant figures.

section 0.10 Significant Figures

It wouldn’t hurt you to skim the sections you think you already
know about, and to do the self-checks in those sections.
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0.5 Basics of the Metric System
The metric system

Units were not standardized until fairly recently in history, so
when the physicist Isaac Newton gave the result of an experiment
with a pendulum, he had to specify not just that the string was 37
7/8 inches long but that it was “37 7/8 London inches long.” The
inch as defined in Yorkshire would have been different. Even after
the British Empire standardized its units, it was still very inconve-
nient to do calculations involving money, volume, distance, time, or
weight, because of all the odd conversion factors, like 16 ounces in
a pound, and 5280 feet in a mile. Through the nineteenth century,
schoolchildren squandered most of their mathematical education in
preparing to do calculations such as making change when a customer
in a shop offered a one-crown note for a book costing two pounds,
thirteen shillings and tuppence. The dollar has always been decimal,
and British money went decimal decades ago, but the United States
is still saddled with the antiquated system of feet, inches, pounds,
ounces and so on.

Every country in the world besides the U.S. has adopted a sys-
tem of units known in English as the “metric system.” This system
is entirely decimal, thanks to the same eminently logical people who
brought about the French Revolution. In deference to France, the
system’s official name is the Système International, or SI, meaning
International System. (The phrase “SI system” is therefore redun-
dant.)

The wonderful thing about the SI is that people who live in
countries more modern than ours do not need to memorize how
many ounces there are in a pound, how many cups in a pint, how
many feet in a mile, etc. The whole system works with a single,
consistent set of prefixes (derived from Greek) that modify the basic
units. Each prefix stands for a power of ten, and has an abbreviation
that can be combined with the symbol for the unit. For instance,
the meter is a unit of distance. The prefix kilo- stands for 103, so a
kilometer, 1 km, is a thousand meters.

The basic units of the metric system are the meter for distance,
the second for time, and the gram for mass.

The following are the most common metric prefixes. You should
memorize them.

prefix meaning example
kilo- k 103 60 kg = a person’s mass
centi- c 10−2 28 cm = height of a piece of paper
milli- m 10−3 1 ms = time for one vibration of a guitar

string playing the note D

The prefix centi-, meaning 10−2, is only used in the centimeter;
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a hundredth of a gram would not be written as 1 cg but as 10 mg.
The centi- prefix can be easily remembered because a cent is 10−2

dollars. The official SI abbreviation for seconds is “s” (not “sec”)
and grams are “g” (not “gm”).

The second

The sun stood still and the moon halted until the nation had
taken vengeance on its enemies. . .

Joshua 10:12-14

Absolute, true, and mathematical time, of itself, and from its
own nature, flows equably without relation to anything exter-
nal. . .

Isaac Newton

When I stated briefly above that the second was a unit of time,
it may not have occurred to you that this was not really much of
a definition. The two quotes above are meant to demonstrate how
much room for confusion exists among people who seem to mean the
same thing by a word such as “time.” The first quote has been inter-
preted by some biblical scholars as indicating an ancient belief that
the motion of the sun across the sky was not just something that
occurred with the passage of time but that the sun actually caused
time to pass by its motion, so that freezing it in the sky would have
some kind of a supernatural decelerating effect on everyone except
the Hebrew soldiers. Many ancient cultures also conceived of time
as cyclical, rather than proceeding along a straight line as in 1998,
1999, 2000, 2001,... The second quote, from a relatively modern
physicist, may sound a lot more scientific, but most physicists to-
day would consider it useless as a definition of time. Today, the
physical sciences are based on operational definitions, which means
definitions that spell out the actual steps (operations) required to
measure something numerically.

Now in an era when our toasters, pens, and coffee pots tell us the
time, it is far from obvious to most people what is the fundamental
operational definition of time. Until recently, the hour, minute, and
second were defined operationally in terms of the time required for
the earth to rotate about its axis. Unfortunately, the Earth’s ro-
tation is slowing down slightly, and by 1967 this was becoming an
issue in scientific experiments requiring precise time measurements.
The second was therefore redefined as the time required for a cer-
tain number of vibrations of the light waves emitted by a cesium
atoms in a lamp constructed like a familiar neon sign but with the
neon replaced by cesium. The new definition not only promises to
stay constant indefinitely, but for scientists is a more convenient
way of calibrating a clock than having to carry out astronomical
measurements.
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e / The original definition of
the meter.

self-check C
What is a possible operational definition of how strong a person is? .

Answer, p. 272

The meter

The French originally defined the meter as 10−7 times the dis-
tance from the equator to the north pole, as measured through Paris
(of course). Even if the definition was operational, the operation of
traveling to the north pole and laying a surveying chain behind you
was not one that most working scientists wanted to carry out. Fairly
soon, a standard was created in the form of a metal bar with two
scratches on it. This was replaced by an atomic standard in 1960,
and finally in 1983 by the current definition, which is that the me-
ter is the distance traveled by light in a vacuum over a period of
(1/299792458) seconds.

The kilogram

The third base unit of the SI is the kilogram, a unit of mass.
Mass is intended to be a measure of the amount of a substance,
but that is not an operational definition. Bathroom scales work by
measuring our planet’s gravitational attraction for the object being
weighed, but using that type of scale to define mass operationally
would be undesirable because gravity varies in strength from place
to place on the earth.

There’s a surprising amount of disagreement among physics text-
books about how mass should be defined, but here’s how it’s actually
handled by the few working physicists who specialize in ultra-high-
precision measurements. They maintain a physical object in Paris,
which is the standard kilogram, a cylinder made of platinum-iridium
alloy. Duplicates are checked against this mother of all kilograms
by putting the original and the copy on the two opposite pans of a
balance. Although this method of comparison depends on gravity,
the problems associated with differences in gravity in different geo-
graphical locations are bypassed, because the two objects are being
compared in the same place. The duplicates can then be removed
from the Parisian kilogram shrine and transported elsewhere in the
world. It would be desirable to replace this at some point with a
universally accessible atomic standard rather than one based on a
specific artifact, but as of 2010 the technology for automated count-
ing of large numbers of atoms has not gotten good enough to make
that work with the desired precision.

Combinations of metric units

Just about anything you want to measure can be measured with
some combination of meters, kilograms, and seconds. Speed can be
measured in m/s, volume in m3, and density in kg/m3. Part of what
makes the SI great is this basic simplicity. No more funny units like
a cord of wood, a bolt of cloth, or a jigger of whiskey. No more
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liquid and dry measure. Just a simple, consistent set of units. The
SI measures put together from meters, kilograms, and seconds make
up the mks system. For example, the mks unit of speed is m/s, not
km/hr.

Checking units

A useful technique for finding mistakes in one’s algebra is to
analyze the units associated with the variables.

Checking units example 1
. Jae starts from the formula V = 1

3Ah for the volume of a cone,
where A is the area of its base, and h is its height. He wants to
find an equation that will tell him how tall a conical tent has to be
in order to have a certain volume, given its radius. His algebra
goes like this:

V =
1
3

Ah[1]

A = πr2[2]

V =
1
3
πr2h[3]

h =
πr2

3V
[4]

Is his algebra correct? If not, find the mistake.

. Line 4 is supposed to be an equation for the height, so the units
of the expression on the right-hand side had better equal meters.
The pi and the 3 are unitless, so we can ignore them. In terms of
units, line 4 becomes

m =
m2

m3 =
1
m

.

This is false, so there must be a mistake in the algebra. The units
of lines 1, 2, and 3 check out, so the mistake must be in the step
from line 3 to line 4. In fact the result should have been

h =
3V
πr2 .

Now the units check: m = m3/m2.

Discussion Question

A Isaac Newton wrote, “. . . the natural days are truly unequal, though
they are commonly considered as equal, and used for a measure of
time. . . It may be that there is no such thing as an equable motion, whereby
time may be accurately measured. All motions may be accelerated or re-
tarded. . . ” Newton was right. Even the modern definition of the second
in terms of light emitted by cesium atoms is subject to variation. For in-
stance, magnetic fields could cause the cesium atoms to emit light with
a slightly different rate of vibration. What makes us think, though, that a
pendulum clock is more accurate than a sundial, or that a cesium atom
is a more accurate timekeeper than a pendulum clock? That is, how can
one test experimentally how the accuracies of different time standards
compare?
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f / This is a mnemonic to help you
remember the most important
metric prefixes. The word “little”
is to remind you that the list starts
with the prefixes used for small
quantities and builds upward.
The exponent changes by 3,
except that of course that we do
not need a special prefix for 100,
which equals one.

0.6 The Newton, the Metric Unit of Force
A force is a push or a pull, or more generally anything that can
change an object’s speed or direction of motion. A force is required
to start a car moving, to slow down a baseball player sliding in to
home base, or to make an airplane turn. (Forces may fail to change
an object’s motion if they are canceled by other forces, e.g., the
force of gravity pulling you down right now is being canceled by the
force of the chair pushing up on you.) The metric unit of force is
the Newton, defined as the force which, if applied for one second,
will cause a 1-kilogram object starting from rest to reach a speed of
1 m/s. Later chapters will discuss the force concept in more detail.
In fact, this entire book is about the relationship between force and
motion.

In section 0.5, I gave a gravitational definition of mass, but by
defining a numerical scale of force, we can also turn around and de-
fine a scale of mass without reference to gravity. For instance, if a
force of two Newtons is required to accelerate a certain object from
rest to 1 m/s in 1 s, then that object must have a mass of 2 kg.
From this point of view, mass characterizes an object’s resistance
to a change in its motion, which we call inertia or inertial mass.
Although there is no fundamental reason why an object’s resistance
to a change in its motion must be related to how strongly gravity
affects it, careful and precise experiments have shown that the in-
ertial definition and the gravitational definition of mass are highly
consistent for a variety of objects. It therefore doesn’t really matter
for any practical purpose which definition one adopts.

Discussion Question

A Spending a long time in weightlessness is unhealthy. One of the
most important negative effects experienced by astronauts is a loss of
muscle and bone mass. Since an ordinary scale won’t work for an astro-
naut in orbit, what is a possible way of monitoring this change in mass?
(Measuring the astronaut’s waist or biceps with a measuring tape is not
good enough, because it doesn’t tell anything about bone mass, or about
the replacement of muscle with fat.)

0.7 Less Common Metric Prefixes
The following are three metric prefixes which, while less common

than the ones discussed previously, are well worth memorizing.

prefix meaning example
mega- M 106 6.4 Mm = radius of the earth
micro- µ 10−6 10 µm = size of a white blood cell
nano- n 10−9 0.154 nm = distance between carbon

nuclei in an ethane molecule

Note that the abbreviation for micro is the Greek letter mu, µ
— a common mistake is to confuse it with m (milli) or M (mega).

32 Chapter 0 Introduction and Review



There are other prefixes even less common, used for extremely
large and small quantities. For instance, 1 femtometer = 10−15 m is
a convenient unit of distance in nuclear physics, and 1 gigabyte =
109 bytes is used for computers’ hard disks. The international com-
mittee that makes decisions about the SI has recently even added
some new prefixes that sound like jokes, e.g., 1 yoctogram = 10−24 g
is about half the mass of a proton. In the immediate future, how-
ever, you’re unlikely to see prefixes like “yocto-” and “zepto-” used
except perhaps in trivia contests at science-fiction conventions or
other geekfests.

self-check D
Suppose you could slow down time so that according to your perception,
a beam of light would move across a room at the speed of a slow walk.
If you perceived a nanosecond as if it was a second, how would you
perceive a microsecond? . Answer, p. 272

0.8 Scientific Notation
Most of the interesting phenomena in our universe are not on the
human scale. It would take about 1,000,000,000,000,000,000,000
bacteria to equal the mass of a human body. When the physicist
Thomas Young discovered that light was a wave, it was back in the
bad old days before scientific notation, and he was obliged to write
that the time required for one vibration of the wave was 1/500 of
a millionth of a millionth of a second. Scientific notation is a less
awkward way to write very large and very small numbers such as
these. Here’s a quick review.

Scientific notation means writing a number in terms of a product
of something from 1 to 10 and something else that is a power of ten.
For instance,

32 = 3.2× 101

320 = 3.2× 102

3200 = 3.2× 103 . . .

Each number is ten times bigger than the previous one.

Since 101 is ten times smaller than 102 , it makes sense to use
the notation 100 to stand for one, the number that is in turn ten
times smaller than 101 . Continuing on, we can write 10−1 to stand
for 0.1, the number ten times smaller than 100 . Negative exponents
are used for small numbers:

3.2 = 3.2× 100

0.32 = 3.2× 10−1

0.032 = 3.2× 10−2 . . .
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A common source of confusion is the notation used on the dis-
plays of many calculators. Examples:

3.2× 106 (written notation)
3.2E+6 (notation on some calculators)
3.26 (notation on some other calculators)

The last example is particularly unfortunate, because 3.26 really
stands for the number 3.2 × 3.2 × 3.2 × 3.2 × 3.2 × 3.2 = 1074, a
totally different number from 3.2 × 106 = 3200000. The calculator
notation should never be used in writing. It’s just a way for the
manufacturer to save money by making a simpler display.

self-check E
A student learns that 104 bacteria, standing in line to register for classes
at Paramecium Community College, would form a queue of this size:

The student concludes that 102 bacteria would form a line of this length:

Why is the student incorrect? . Answer, p. 272

0.9 Conversions
I suggest you avoid memorizing lots of conversion factors between
SI units and U.S. units, but two that do come in handy are:

1 inch = 2.54 cm

An object with a weight on Earth of 2.2 pounds-force has a
mass of 1 kg.

The first one is the present definition of the inch, so it’s exact. The
second one is not exact, but is good enough for most purposes. (U.S.
units of force and mass are confusing, so it’s a good thing they’re
not used in science. In U.S. units, the unit of force is the pound-
force, and the best unit to use for mass is the slug, which is about
14.6 kg.)

More important than memorizing conversion factors is under-
standing the right method for doing conversions. Even within the
SI, you may need to convert, say, from grams to kilograms. Differ-
ent people have different ways of thinking about conversions, but
the method I’ll describe here is systematic and easy to understand.
The idea is that if 1 kg and 1000 g represent the same mass, then
we can consider a fraction like

103 g

1 kg

to be a way of expressing the number one. This may bother you. For
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instance, if you type 1000/1 into your calculator, you will get 1000,
not one. Again, different people have different ways of thinking
about it, but the justification is that it helps us to do conversions,
and it works! Now if we want to convert 0.7 kg to units of grams,
we can multiply kg by the number one:

0.7 kg× 103 g

1 kg

If you’re willing to treat symbols such as “kg” as if they were vari-
ables as used in algebra (which they’re really not), you can then
cancel the kg on top with the kg on the bottom, resulting in

0.7��kg× 103 g

1��kg
= 700 g .

To convert grams to kilograms, you would simply flip the fraction
upside down.

One advantage of this method is that it can easily be applied to
a series of conversions. For instance, to convert one year to units of
seconds,

1���year× 365��
�days

1���year
× 24���hours

1��day
× 60���min

1���hour
× 60 s

1���min
=

= 3.15× 107 s .

Should that exponent be positive, or negative?

A common mistake is to write the conversion fraction incorrectly.
For instance the fraction

103 kg

1 g
(incorrect)

does not equal one, because 103 kg is the mass of a car, and 1 g is
the mass of a raisin. One correct way of setting up the conversion
factor would be

10−3 kg

1 g
(correct) .

You can usually detect such a mistake if you take the time to check
your answer and see if it is reasonable.

If common sense doesn’t rule out either a positive or a negative
exponent, here’s another way to make sure you get it right. There
are big prefixes and small prefixes:

big prefixes: k M
small prefixes: m µ n

(It’s not hard to keep straight which are which, since “mega” and
“micro” are evocative, and it’s easy to remember that a kilometer
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is bigger than a meter and a millimeter is smaller.) In the example
above, we want the top of the fraction to be the same as the bottom.
Since k is a big prefix, we need to compensate by putting a small
number like 10−3 in front of it, not a big number like 103.

. Solved problem: a simple conversion page 41, problem 6

. Solved problem: the geometric mean page 42, problem 8

Discussion Question

A Each of the following conversions contains an error. In each case,
explain what the error is.

(a) 1000 kg× 1 kg
1000 g = 1 g

(b) 50 m× 1 cm
100 m = 0.5 cm

(c) “Nano” is 10−9, so there are 10−9 nm in a meter.

(d) “Micro” is 10−6, so 1 kg is 106 µg.

0.10 Significant Figures
An engineer is designing a car engine, and has been told that the
diameter of the pistons (which are being designed by someone else)
is 5 cm. He knows that 0.02 cm of clearance is required for a piston
of this size, so he designs the cylinder to have an inside diameter of
5.04 cm. Luckily, his supervisor catches his mistake before the car
goes into production. She explains his error to him, and mentally
puts him in the “do not promote” category.

What was his mistake? The person who told him the pistons
were 5 cm in diameter was wise to the ways of significant figures,
as was his boss, who explained to him that he needed to go back
and get a more accurate number for the diameter of the pistons.
That person said “5 cm” rather than “5.00 cm” specifically to avoid
creating the impression that the number was extremely accurate. In
reality, the pistons’ diameter was 5.13 cm. They would never have
fit in the 5.04-cm cylinders.

The number of digits of accuracy in a number is referred to as
the number of significant figures, or “sig figs” for short. As in the
example above, sig figs provide a way of showing the accuracy of a
number. In most cases, the result of a calculation involving several
pieces of data can be no more accurate than the least accurate piece
of data. In other words, “garbage in, garbage out.” Since the 5
cm diameter of the pistons was not very accurate, the result of the
engineer’s calculation, 5.04 cm, was really not as accurate as he
thought. In general, your result should not have more than the
number of sig figs in the least accurate piece of data you started
with. The calculation above should have been done as follows:
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5 cm (1 sig fig)

+0.04 cm (1 sig fig)

=5 cm (rounded off to 1 sig fig)

The fact that the final result only has one significant figure then
alerts you to the fact that the result is not very accurate, and would
not be appropriate for use in designing the engine.

Note that the leading zeroes in the number 0.04 do not count
as significant figures, because they are only placeholders. On the
other hand, a number such as 50 cm is ambiguous — the zero could
be intended as a significant figure, or it might just be there as a
placeholder. The ambiguity involving trailing zeroes can be avoided
by using scientific notation, in which 5 × 101 cm would imply one
sig fig of accuracy, while 5.0× 101 cm would imply two sig figs.

self-check F
The following quote is taken from an editorial by Norimitsu Onishi in the
New York Times, August 18, 2002.

Consider Nigeria. Everyone agrees it is Africa’s most populous
nation. But what is its population? The United Nations says
114 million; the State Department, 120 million. The World Bank
says 126.9 million, while the Central Intelligence Agency puts it
at 126,635,626.

What should bother you about this? . Answer, p. 272

Dealing correctly with significant figures can save you time! Of-
ten, students copy down numbers from their calculators with eight
significant figures of precision, then type them back in for a later
calculation. That’s a waste of time, unless your original data had
that kind of incredible precision.

The rules about significant figures are only rules of thumb, and
are not a substitute for careful thinking. For instance, $20.00 +
$0.05 is $20.05. It need not and should not be rounded off to $20.
In general, the sig fig rules work best for multiplication and division,
and we also apply them when doing a complicated calculation that
involves many types of operations. For simple addition and subtrac-
tion, it makes more sense to maintain a fixed number of digits after
the decimal point.

When in doubt, don’t use the sig fig rules at all. Instead, in-
tentionally change one piece of your initial data by the maximum
amount by which you think it could have been off, and recalculate
the final result. The digits on the end that are completely reshuffled
are the ones that are meaningless, and should be omitted.

self-check G
How many significant figures are there in each of the following mea-
surements?
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(1) 9.937 m

(2) 4.0 s

(3) 0.0000000000000037 kg . Answer, p. 272
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Summary
Selected Vocabulary
matter . . . . . . Anything that is affected by gravity.
light . . . . . . . . Anything that can travel from one place to an-

other through empty space and can influence
matter, but is not affected by gravity.

operational defi-
nition . . . . . . .

A definition that states what operations
should be carried out to measure the thing be-
ing defined.

Système Interna-
tional . . . . . . .

A fancy name for the metric system.

mks system . . . The use of metric units based on the meter,
kilogram, and second. Example: meters per
second is the mks unit of speed, not cm/s or
km/hr.

mass . . . . . . . A numerical measure of how difficult it is to
change an object’s motion.

significant figures Digits that contribute to the accuracy of a
measurement.

Notation
m . . . . . . . . . meter, the metric distance unit
kg . . . . . . . . . kilogram, the metric unit of mass
s . . . . . . . . . . second, the metric unit of time
M- . . . . . . . . . the metric prefix mega-, 106

k- . . . . . . . . . the metric prefix kilo-, 103

m- . . . . . . . . . the metric prefix milli-, 10−3

µ- . . . . . . . . . the metric prefix micro-, 10−6

n- . . . . . . . . . the metric prefix nano-, 10−9

Summary

Physics is the use of the scientific method to study the behavior
of light and matter. The scientific method requires a cycle of the-
ory and experiment, theories with both predictive and explanatory
value, and reproducible experiments.

The metric system is a simple, consistent framework for measure-
ment built out of the meter, the kilogram, and the second plus a set
of prefixes denoting powers of ten. The most systematic method for
doing conversions is shown in the following example:

370 ms× 10−3 s

1 ms
= 0.37 s

Mass is a measure of the amount of a substance. Mass can be
defined gravitationally, by comparing an object to a standard mass
on a double-pan balance, or in terms of inertia, by comparing the
effect of a force on an object to the effect of the same force on a
standard mass. The two definitions are found experimentally to
be proportional to each other to a high degree of precision, so we
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usually refer simply to “mass,” without bothering to specify which
type.

A force is that which can change the motion of an object. The
metric unit of force is the Newton, defined as the force required to
accelerate a standard 1-kg mass from rest to a speed of 1 m/s in 1
s.

Scientific notation means, for example, writing 3.2× 105 rather
than 320000.

Writing numbers with the correct number of significant figures
correctly communicates how accurate they are. As a rule of thumb,
the final result of a calculation is no more accurate than, and should
have no more significant figures than, the least accurate piece of
data.

Exploring Further

Microbe Hunters, Paul de Kruif. The dramatic life-and-death
stories in this book are entertaining, but along the way de Kruif also
presents an excellent, warts-and-all picture of how real science and
real scientists really work — an excellent anecdote to the sanitized
picture of the scientific method often presented in textbooks. Some
of the descriptions of field work in Africa are marred by racism.

Voodoo Science: The Road from Foolishness to Fraud, Robert
L. Park. Park has some penetrating psychological insights into the
fundamental problems that Homo sapiens (scientists included) of-
ten have with the unwelcome truths that science tosses in our laps.
Until I read this book, I hadn’t realized, for example, how common
it is to find pockets of bogus science in such otherwise respectable
institutions as NASA.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Correct use of a calculator: (a) Calculate 74658
53222+97554 on a cal-

culator. [Self-check: The most common mistake results in 97555.40.]√

(b) Which would be more like the price of a TV, and which would
be more like the price of a house, $3.5× 105 or $3.55?

2 Compute the following things. If they don’t make sense be-
cause of units, say so.
(a) 3 cm + 5 cm
(b) 1.11 m + 22 cm
(c) 120 miles + 2.0 hours
(d) 120 miles / 2.0 hours

3 Your backyard has brick walls on both ends. You measure a
distance of 23.4 m from the inside of one wall to the inside of the
other. Each wall is 29.4 cm thick. How far is it from the outside
of one wall to the outside of the other? Pay attention to significant
figures.

4 The speed of light is 3.0 × 108 m/s. Convert this to furlongs
per fortnight. A furlong is 220 yards, and a fortnight is 14 days. An
inch is 2.54 cm.

√

5 Express each of the following quantities in micrograms:
(a) 10 mg, (b) 104 g, (c) 10 kg, (d) 100× 103 g, (e) 1000 ng.

√

6 Convert 134 mg to units of kg, writing your answer in scientific
notation. . Solution, p. 275

7 In the last century, the average age of the onset of puberty for
girls has decreased by several years. Urban folklore has it that this
is because of hormones fed to beef cattle, but it is more likely to be
because modern girls have more body fat on the average and pos-
sibly because of estrogen-mimicking chemicals in the environment
from the breakdown of pesticides. A hamburger from a hormone-
implanted steer has about 0.2 ng of estrogen (about double the
amount of natural beef). A serving of peas contains about 300
ng of estrogen. An adult woman produces about 0.5 mg of estrogen
per day (note the different unit!). (a) How many hamburgers would
a girl have to eat in one day to consume as much estrogen as an
adult woman’s daily production? (b) How many servings of peas?√
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Problem 10.

8 The usual definition of the mean (average) of two numbers a
and b is (a+b)/2. This is called the arithmetic mean. The geometric
mean, however, is defined as (ab)1/2 (i.e., the square root of ab). For
the sake of definiteness, let’s say both numbers have units of mass.
(a) Compute the arithmetic mean of two numbers that have units
of grams. Then convert the numbers to units of kilograms and
recompute their mean. Is the answer consistent? (b) Do the same
for the geometric mean. (c) If a and b both have units of grams,
what should we call the units of ab? Does your answer make sense
when you take the square root? (d) Suppose someone proposes to
you a third kind of mean, called the superduper mean, defined as
(ab)1/3. Is this reasonable? . Solution, p. 275

9 In an article on the SARS epidemic, the May 7, 2003 New
York Times discusses conflicting estimates of the disease’s incuba-
tion period (the average time that elapses from infection to the first
symptoms). “The study estimated it to be 6.4 days. But other sta-
tistical calculations ... showed that the incubation period could be
as long as 14.22 days.” What’s wrong here?

10 The photo shows the corner of a bag of pretzels. What’s
wrong here?

11 The distance to the horizon is given by the expression
√

2rh,
where r is the radius of the Earth, and h is the observer’s height
above the Earth’s surface. (This can be proved using the Pythagorean
theorem.) Show that the units of this expression make sense. Don’t
try to prove the result, just check its units.
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a / Amoebas this size are
seldom encountered.

Life would be very different if you
were the size of an insect.

Chapter 1

Scaling and
Order-of-Magnitude
Estimates

1.1 Introduction
Why can’t an insect be the size of a dog? Some skinny stretched-

out cells in your spinal cord are a meter tall — why does nature
display no single cells that are not just a meter tall, but a meter
wide, and a meter thick as well? Believe it or not, these are questions
that can be answered fairly easily without knowing much more about
physics than you already do. The only mathematical technique you
really need is the humble conversion, applied to area and volume.

Area and volume

Area can be defined by saying that we can copy the shape of
interest onto graph paper with 1 cm × 1 cm squares and count the
number of squares inside. Fractions of squares can be estimated by
eye. We then say the area equals the number of squares, in units of
square cm. Although this might seem less “pure” than computing
areas using formulae like A = πr2 for a circle or A = wh/2 for a
triangle, those formulae are not useful as definitions of area because
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they cannot be applied to irregularly shaped areas.

Units of square cm are more commonly written as cm2 in science.
Of course, the unit of measurement symbolized by “cm” is not an
algebra symbol standing for a number that can be literally multiplied
by itself. But it is advantageous to write the units of area that way
and treat the units as if they were algebra symbols. For instance,
if you have a rectangle with an area of 6m2 and a width of 2 m,
then calculating its length as (6 m2)/(2 m) = 3 m gives a result
that makes sense both numerically and in terms of units. This
algebra-style treatment of the units also ensures that our methods
of converting units work out correctly. For instance, if we accept
the fraction

100 cm

1 m

as a valid way of writing the number one, then one times one equals
one, so we should also say that one can be represented by

100 cm

1 m
× 100 cm

1 m
,

which is the same as
10000 cm2

1 m2
.

That means the conversion factor from square meters to square cen-
timeters is a factor of 104, i.e., a square meter has 104 square cen-
timeters in it.

All of the above can be easily applied to volume as well, using
one-cubic-centimeter blocks instead of squares on graph paper.

To many people, it seems hard to believe that a square meter
equals 10000 square centimeters, or that a cubic meter equals a
million cubic centimeters — they think it would make more sense if
there were 100 cm2 in 1 m2, and 100 cm3 in 1 m3, but that would be
incorrect. The examples shown in figure b aim to make the correct
answer more believable, using the traditional U.S. units of feet and
yards. (One foot is 12 inches, and one yard is three feet.)

b / Visualizing conversions of
area and volume using traditional
U.S. units.

self-check A
Based on figure b, convince yourself that there are 9 ft2 in a square yard,
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and 27 ft3 in a cubic yard, then demonstrate the same thing symbolically
(i.e., with the method using fractions that equal one). . Answer, p.
272

. Solved problem: converting mm2 to cm2 page 61, problem 10

. Solved problem: scaling a liter page 62, problem 19

Discussion Question

A How many square centimeters are there in a square inch? (1 inch =
2.54 cm) First find an approximate answer by making a drawing, then de-
rive the conversion factor more accurately using the symbolic method.

c / Galileo Galilei (1564-1642) was a Renaissance Italian who brought the
scientific method to bear on physics, creating the modern version of the
science. Coming from a noble but very poor family, Galileo had to drop
out of medical school at the University of Pisa when he ran out of money.
Eventually becoming a lecturer in mathematics at the same school, he
began a career as a notorious troublemaker by writing a burlesque ridi-
culing the university’s regulations — he was forced to resign, but found a
new teaching position at Padua. He invented the pendulum clock, inves-
tigated the motion of falling bodies, and discovered the moons of Jupiter.
The thrust of his life’s work was to discredit Aristotle’s physics by con-
fronting it with contradictory experiments, a program which paved the way
for Newton’s discovery of the relationship between force and motion. In
chapter 3 we’ll come to the story of Galileo’s ultimate fate at the hands of
the Church.

1.2 Scaling of Area and Volume
Great fleas have lesser fleas
Upon their backs to bite ’em.
And lesser fleas have lesser still,
And so ad infinitum.

Jonathan Swift

Now how do these conversions of area and volume relate to the
questions I posed about sizes of living things? Well, imagine that
you are shrunk like Alice in Wonderland to the size of an insect.
One way of thinking about the change of scale is that what used
to look like a centimeter now looks like perhaps a meter to you,
because you’re so much smaller. If area and volume scaled according
to most people’s intuitive, incorrect expectations, with 1 m2 being
the same as 100 cm2, then there would be no particular reason
why nature should behave any differently on your new, reduced
scale. But nature does behave differently now that you’re small.
For instance, you will find that you can walk on water, and jump
to many times your own height. The physicist Galileo Galilei had
the basic insight that the scaling of area and volume determines
how natural phenomena behave differently on different scales. He
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d / The small boat holds up
just fine.

e / A larger boat built with
the same proportions as the
small one will collapse under its
own weight.

f / A boat this large needs to
have timbers that are thicker
compared to its size.

first reasoned about mechanical structures, but later extended his
insights to living things, taking the then-radical point of view that at
the fundamental level, a living organism should follow the same laws
of nature as a machine. We will follow his lead by first discussing
machines and then living things.

Galileo on the behavior of nature on large and small scales

One of the world’s most famous pieces of scientific writing is
Galileo’s Dialogues Concerning the Two New Sciences. Galileo was
an entertaining writer who wanted to explain things clearly to laypeo-
ple, and he livened up his work by casting it in the form of a dialogue
among three people. Salviati is really Galileo’s alter ego. Simplicio
is the stupid character, and one of the reasons Galileo got in trouble
with the Church was that there were rumors that Simplicio repre-
sented the Pope. Sagredo is the earnest and intelligent student, with
whom the reader is supposed to identify. (The following excerpts
are from the 1914 translation by Crew and de Salvio.)

SAGREDO: Yes, that is what I mean; and I refer especially to
his last assertion which I have always regarded as false. . . ;
namely, that in speaking of these and other similar machines
one cannot argue from the small to the large, because many
devices which succeed on a small scale do not work on a
large scale. Now, since mechanics has its foundations in ge-
ometry, where mere size [ is unimportant], I do not see that
the properties of circles, triangles, cylinders, cones and other
solid figures will change with their size. If, therefore, a large
machine be constructed in such a way that its parts bear to
one another the same ratio as in a smaller one, and if the
smaller is sufficiently strong for the purpose for which it is
designed, I do not see why the larger should not be able to
withstand any severe and destructive tests to which it may be
subjected.

Salviati contradicts Sagredo:

SALVIATI: . . . Please observe, gentlemen, how facts which
at first seem improbable will, even on scant explanation, drop
the cloak which has hidden them and stand forth in naked and
simple beauty. Who does not know that a horse falling from a
height of three or four cubits will break his bones, while a dog
falling from the same height or a cat from a height of eight
or ten cubits will suffer no injury? Equally harmless would be
the fall of a grasshopper from a tower or the fall of an ant from
the distance of the moon.

The point Galileo is making here is that small things are sturdier
in proportion to their size. There are a lot of objections that could be
raised, however. After all, what does it really mean for something to
be “strong”, to be “strong in proportion to its size,” or to be strong
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g / Galileo discusses planks
made of wood, but the concept
may be easier to imagine with
clay. All three clay rods in the
figure were originally the same
shape. The medium-sized one
was twice the height, twice the
length, and twice the width of
the small one, and similarly the
large one was twice as big as
the medium one in all its linear
dimensions. The big one has
four times the linear dimensions
of the small one, 16 times the
cross-sectional area when cut
perpendicular to the page, and
64 times the volume. That means
that the big one has 64 times the
weight to support, but only 16
times the strength compared to
the smallest one.

“out of proportion to its size?” Galileo hasn’t given operational
definitions of things like “strength,” i.e., definitions that spell out
how to measure them numerically.

Also, a cat is shaped differently from a horse — an enlarged
photograph of a cat would not be mistaken for a horse, even if the
photo-doctoring experts at the National Inquirer made it look like a
person was riding on its back. A grasshopper is not even a mammal,
and it has an exoskeleton instead of an internal skeleton. The whole
argument would be a lot more convincing if we could do some iso-
lation of variables, a scientific term that means to change only one
thing at a time, isolating it from the other variables that might have
an effect. If size is the variable whose effect we’re interested in see-
ing, then we don’t really want to compare things that are different
in size but also different in other ways.

SALVIATI: . . . we asked the reason why [shipbuilders] em-
ployed stocks, scaffolding, and bracing of larger dimensions
for launching a big vessel than they do for a small one; and
[an old man] answered that they did this in order to avoid the
danger of the ship parting under its own heavy weight, a dan-
ger to which small boats are not subject?

After this entertaining but not scientifically rigorous beginning,
Galileo starts to do something worthwhile by modern standards.
He simplifies everything by considering the strength of a wooden
plank. The variables involved can then be narrowed down to the
type of wood, the width, the thickness, and the length. He also
gives an operational definition of what it means for the plank to
have a certain strength “in proportion to its size,” by introducing
the concept of a plank that is the longest one that would not snap
under its own weight if supported at one end. If you increased
its length by the slightest amount, without increasing its width or
thickness, it would break. He says that if one plank is the same
shape as another but a different size, appearing like a reduced or
enlarged photograph of the other, then the planks would be strong
“in proportion to their sizes” if both were just barely able to support
their own weight.

h / 1. This plank is as long as it
can be without collapsing under
its own weight. If it was a hun-
dredth of an inch longer, it would
collapse. 2. This plank is made
out of the same kind of wood. It is
twice as thick, twice as long, and
twice as wide. It will collapse un-
der its own weight.
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Also, Galileo is doing something that would be frowned on in
modern science: he is mixing experiments whose results he has ac-
tually observed (building boats of different sizes), with experiments
that he could not possibly have done (dropping an ant from the
height of the moon). He now relates how he has done actual ex-
periments with such planks, and found that, according to this op-
erational definition, they are not strong in proportion to their sizes.
The larger one breaks. He makes sure to tell the reader how impor-
tant the result is, via Sagredo’s astonished response:

SAGREDO: My brain already reels. My mind, like a cloud
momentarily illuminated by a lightning flash, is for an instant
filled with an unusual light, which now beckons to me and
which now suddenly mingles and obscures strange, crude
ideas. From what you have said it appears to me impossible
to build two similar structures of the same material, but of
different sizes and have them proportionately strong.

In other words, this specific experiment, using things like wooden
planks that have no intrinsic scientific interest, has very wide impli-
cations because it points out a general principle, that nature acts
differently on different scales.

To finish the discussion, Galileo gives an explanation. He says
that the strength of a plank (defined as, say, the weight of the heav-
iest boulder you could put on the end without breaking it) is pro-
portional to its cross-sectional area, that is, the surface area of the
fresh wood that would be exposed if you sawed through it in the
middle. Its weight, however, is proportional to its volume.1

How do the volume and cross-sectional area of the longer plank
compare with those of the shorter plank? We have already seen,
while discussing conversions of the units of area and volume, that
these quantities don’t act the way most people naively expect. You
might think that the volume and area of the longer plank would both
be doubled compared to the shorter plank, so they would increase
in proportion to each other, and the longer plank would be equally
able to support its weight. You would be wrong, but Galileo knows
that this is a common misconception, so he has Salviati address the
point specifically:

SALVIATI: . . . Take, for example, a cube two inches on a
side so that each face has an area of four square inches
and the total area, i.e., the sum of the six faces, amounts
to twenty-four square inches; now imagine this cube to be
sawed through three times [with cuts in three perpendicular
planes] so as to divide it into eight smaller cubes, each one
inch on the side, each face one inch square, and the total

1Galileo makes a slightly more complicated argument, taking into account
the effect of leverage (torque). The result I’m referring to comes out the same
regardless of this effect.
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i / The area of a shape is
proportional to the square of its
linear dimensions, even if the
shape is irregular.

surface of each cube six square inches instead of twenty-
four in the case of the larger cube. It is evident therefore,
that the surface of the little cube is only one-fourth that of
the larger, namely, the ratio of six to twenty-four; but the vol-
ume of the solid cube itself is only one-eighth; the volume,
and hence also the weight, diminishes therefore much more
rapidly than the surface. . . You see, therefore, Simplicio, that
I was not mistaken when . . . I said that the surface of a small
solid is comparatively greater than that of a large one.

The same reasoning applies to the planks. Even though they
are not cubes, the large one could be sawed into eight small ones,
each with half the length, half the thickness, and half the width.
The small plank, therefore, has more surface area in proportion to
its weight, and is therefore able to support its own weight while the
large one breaks.

Scaling of area and volume for irregularly shaped objects

You probably are not going to believe Galileo’s claim that this
has deep implications for all of nature unless you can be convinced
that the same is true for any shape. Every drawing you’ve seen so
far has been of squares, rectangles, and rectangular solids. Clearly
the reasoning about sawing things up into smaller pieces would not
prove anything about, say, an egg, which cannot be cut up into eight
smaller egg-shaped objects with half the length.

Is it always true that something half the size has one quarter
the surface area and one eighth the volume, even if it has an irreg-
ular shape? Take the example of a child’s violin. Violins are made
for small children in smaller size to accomodate their small bodies.
Figure i shows a full-size violin, along with two violins made with
half and 3/4 of the normal length.2 Let’s study the surface area of
the front panels of the three violins.

Consider the square in the interior of the panel of the full-size
violin. In the 3/4-size violin, its height and width are both smaller
by a factor of 3/4, so the area of the corresponding, smaller square
becomes 3/4×3/4 = 9/16 of the original area, not 3/4 of the original
area. Similarly, the corresponding square on the smallest violin has
half the height and half the width of the original one, so its area is
1/4 the original area, not half.

The same reasoning works for parts of the panel near the edge,
such as the part that only partially fills in the other square. The
entire square scales down the same as a square in the interior, and
in each violin the same fraction (about 70%) of the square is full, so
the contribution of this part to the total area scales down just the

2The customary terms “half-size” and “3/4-size” actually don’t describe the
sizes in any accurate way. They’re really just standard, arbitrary marketing
labels.
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j / The muffin comes out of
the oven too hot to eat. Breaking
it up into four pieces increases
its surface area while keeping
the total volume the same. It
cools faster because of the
greater surface-to-volume ratio.
In general, smaller things have
greater surface-to-volume ratios,
but in this example there is no
easy way to compute the effect
exactly, because the small pieces
aren’t the same shape as the
original muffin.

same.

Since any small square region or any small region covering part
of a square scales down like a square object, the entire surface area
of an irregularly shaped object changes in the same manner as the
surface area of a square: scaling it down by 3/4 reduces the area by
a factor of 9/16, and so on.

In general, we can see that any time there are two objects with
the same shape, but different linear dimensions (i.e., one looks like a
reduced photo of the other), the ratio of their areas equals the ratio
of the squares of their linear dimensions:

A1

A2
=

(
L1

L2

)2

.

Note that it doesn’t matter where we choose to measure the linear
size, L, of an object. In the case of the violins, for instance, it could
have been measured vertically, horizontally, diagonally, or even from
the bottom of the left f-hole to the middle of the right f-hole. We
just have to measure it in a consistent way on each violin. Since all
the parts are assumed to shrink or expand in the same manner, the
ratio L1/L2 is independent of the choice of measurement.

It is also important to realize that it is completely unnecessary
to have a formula for the area of a violin. It is only possible to
derive simple formulas for the areas of certain shapes like circles,
rectangles, triangles and so on, but that is no impediment to the
type of reasoning we are using.

Sometimes it is inconvenient to write all the equations in terms
of ratios, especially when more than two objects are being compared.
A more compact way of rewriting the previous equation is

A ∝ L2 .

The symbol “∝” means “is proportional to.” Scientists and engi-
neers often speak about such relationships verbally using the phrases
“scales like” or “goes like,” for instance “area goes like length squared.”

All of the above reasoning works just as well in the case of vol-
ume. Volume goes like length cubed:

V ∝ L3 .

If different objects are made of the same material with the same
density, ρ = m/V , then their masses, m = ρV , are proportional
to L3, and so are their weights. (The symbol for density is ρ, the
lower-case Greek letter “rho.”)

An important point is that all of the above reasoning about
scaling only applies to objects that are the same shape. For instance,
a piece of paper is larger than a pencil, but has a much greater
surface-to-volume ratio.
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k / Example 1. The big trian-
gle has four times more area than
the little one.

l / A tricky way of solving ex-
ample 1, explained in solution #2.

One of the first things I learned as a teacher was that students
were not very original about their mistakes. Every group of students
tends to come up with the same goofs as the previous class. The
following are some examples of correct and incorrect reasoning about
proportionality.

Scaling of the area of a triangle example 1
. In figure k, the larger triangle has sides twice as long. How
many times greater is its area?

Correct solution #1: Area scales in proportion to the square of the
linear dimensions, so the larger triangle has four times more area
(22 = 4).

Correct solution #2: You could cut the larger triangle into four of
the smaller size, as shown in fig. (b), so its area is four times
greater. (This solution is correct, but it would not work for a shape
like a circle, which can’t be cut up into smaller circles.)

Correct solution #3: The area of a triangle is given by

A = bh/2, where b is the base and h is the height. The areas of
the triangles are

A1 = b1h1/2
A2 = b2h2/2

= (2b1)(2h1)/2
= 2b1h1

A2/A1 = (2b1h1)/(b1h1/2)
= 4

(Although this solution is correct, it is a lot more work than solution
#1, and it can only be used in this case because a triangle is a
simple geometric shape, and we happen to know a formula for its
area.)

Correct solution #4: The area of a triangle is A = bh/2. The
comparison of the areas will come out the same as long as the
ratios of the linear sizes of the triangles is as specified, so let’s
just say b1 = 1.00 m and b2 = 2.00 m. The heights are then also
h1 = 1.00 m and h2 = 2.00 m, giving areas A1 = 0.50 m2 and
A2 = 2.00 m2, so A2/A1 = 4.00.

(The solution is correct, but it wouldn’t work with a shape for
whose area we don’t have a formula. Also, the numerical cal-
culation might make the answer of 4.00 appear inexact, whereas
solution #1 makes it clear that it is exactly 4.)

Incorrect solution: The area of a triangle is A = bh/2, and if you
plug in b = 2.00 m and h = 2.00 m, you get A = 2.00 m2, so
the bigger triangle has 2.00 times more area. (This solution is
incorrect because no comparison has been made with the smaller
triangle.)
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m / Example 2. The big sphere
has 125 times more volume than
the little one.

n / Example 3. The 48-point
“S” has 1.78 times more area
than the 36-point “S.”

Scaling of the volume of a sphere example 2
. In figure m, the larger sphere has a radius that is five times
greater. How many times greater is its volume?

Correct solution #1: Volume scales like the third power of the
linear size, so the larger sphere has a volume that is 125 times
greater (53 = 125).

Correct solution #2: The volume of a sphere is V = (4/3)πr3, so

V1 =
4
3
πr3

1

V2 =
4
3
πr3

2

=
4
3
π(5r1)3

=
500

3
πr3

1

V2/V1 =
(

500
3

πr3
1

)
/

(
4
3
πr3

1

)
= 125

Incorrect solution: The volume of a sphere is V = (4/3)πr3, so

V1 =
4
3
πr3

1

V2 =
4
3
πr3

2

=
4
3
π · 5r3

1

=
20
3
πr3

1

V2/V1 =
(

20
3
πr3

1

)
/

(
4
3
πr3

1

)
= 5

(The solution is incorrect because (5r1)3 is not the same as 5r3
1 .)

Scaling of a more complex shape example 3
. The first letter “S” in figure n is in a 36-point font, the second in
48-point. How many times more ink is required to make the larger
“S”? (Points are a unit of length used in typography.)

Correct solution: The amount of ink depends on the area to be
covered with ink, and area is proportional to the square of the
linear dimensions, so the amount of ink required for the second
“S” is greater by a factor of (48/36)2 = 1.78.

Incorrect solution: The length of the curve of the second “S” is
longer by a factor of 48/36 = 1.33, so 1.33 times more ink is
required.

(The solution is wrong because it assumes incorrectly that the
width of the curve is the same in both cases. Actually both the
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width and the length of the curve are greater by a factor of 48/36,
so the area is greater by a factor of (48/36)2 = 1.78.)

. Solved problem: a telescope gathers light page 61, problem 11

. Solved problem: distance from an earthquake page 61, problem 12

Discussion Questions

A A toy fire engine is 1/30 the size of the real one, but is constructed
from the same metal with the same proportions. How many times smaller
is its weight? How many times less red paint would be needed to paint
it?

B Galileo spends a lot of time in his dialog discussing what really
happens when things break. He discusses everything in terms of Aristo-
tle’s now-discredited explanation that things are hard to break, because
if something breaks, there has to be a gap between the two halves with
nothing in between, at least initially. Nature, according to Aristotle, “ab-
hors a vacuum,” i.e., nature doesn’t “like” empty space to exist. Of course,
air will rush into the gap immediately, but at the very moment of breaking,
Aristotle imagined a vacuum in the gap. Is Aristotle’s explanation of why
it is hard to break things an experimentally testable statement? If so, how
could it be tested experimentally?

1.3 ? Scaling Applied To Biology
Organisms of different sizes with the same shape

The left-hand panel in figure o shows the approximate valid-
ity of the proportionality m ∝ L3 for cockroaches (redrawn from
McMahon and Bonner). The scatter of the points around the curve
indicates that some cockroaches are proportioned slightly differently
from others, but in general the data seem well described by m ∝ L3.
That means that the largest cockroaches the experimenter could
raise (is there a 4-H prize?) had roughly the same shape as the
smallest ones.

Another relationship that should exist for animals of different
sizes shaped in the same way is that between surface area and
body mass. If all the animals have the same average density, then
body mass should be proportional to the cube of the animal’s lin-
ear size, m ∝ L3, while surface area should vary proportionately to
L2. Therefore, the animals’ surface areas should be proportional to
m2/3. As shown in the right-hand panel of figure o, this relationship
appears to hold quite well for the dwarf siren, a type of salamander.
Notice how the curve bends over, meaning that the surface area does
not increase as quickly as body mass, e.g., a salamander with eight
times more body mass will have only four times more surface area.

This behavior of the ratio of surface area to mass (or, equiv-
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o / Geometrical scaling of animals.

alently, the ratio of surface area to volume) has important conse-
quences for mammals, which must maintain a constant body tem-
perature. It would make sense for the rate of heat loss through the
animal’s skin to be proportional to its surface area, so we should
expect small animals, having large ratios of surface area to volume,
to need to produce a great deal of heat in comparison to their size to
avoid dying from low body temperature. This expectation is borne
out by the data of the left-hand panel of figure p, showing the rate
of oxygen consumption of guinea pigs as a function of their body
mass. Neither an animal’s heat production nor its surface area is
convenient to measure, but in order to produce heat, the animal
must metabolize oxygen, so oxygen consumption is a good indicator
of the rate of heat production. Since surface area is proportional to
m2/3, the proportionality of the rate of oxygen consumption to m2/3

is consistent with the idea that the animal needs to produce heat at a
rate in proportion to its surface area. Although the smaller animals
metabolize less oxygen and produce less heat in absolute terms, the
amount of food and oxygen they must consume is greater in propor-
tion to their own mass. The Etruscan pigmy shrew, weighing in at
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q / Galileo’s original drawing,
showing how larger animals’
bones must be greater in diam-
eter compared to their lengths.

p / Scaling of animals’ bodies related to metabolic rate and skeletal strength.

2 grams as an adult, is at about the lower size limit for mammals.
It must eat continually, consuming many times its body weight each
day to survive.

Changes in shape to accommodate changes in size

Large mammals, such as elephants, have a small ratio of surface
area to volume, and have problems getting rid of their heat fast
enough. An elephant cannot simply eat small enough amounts to
keep from producing excessive heat, because cells need to have a
certain minimum metabolic rate to run their internal machinery.
Hence the elephant’s large ears, which add to its surface area and
help it to cool itself. Previously, we have seen several examples
of data within a given species that were consistent with a fixed
shape, scaled up and down in the cases of individual specimens. The
elephant’s ears are an example of a change in shape necessitated by
a change in scale.

Large animals also must be able to support their own weight.
Returning to the example of the strengths of planks of different
sizes, we can see that if the strength of the plank depends on area
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while its weight depends on volume, then the ratio of strength to
weight goes as follows:

strength/weight ∝ A/V ∝ 1/L .

Thus, the ability of objects to support their own weights decreases
inversely in proportion to their linear dimensions. If an object is to
be just barely able to support its own weight, then a larger version
will have to be proportioned differently, with a different shape.

Since the data on the cockroaches seemed to be consistent with
roughly similar shapes within the species, it appears that the abil-
ity to support its own weight was not the tightest design constraint
that Nature was working under when she designed them. For large
animals, structural strength is important. Galileo was the first to
quantify this reasoning and to explain why, for instance, a large an-
imal must have bones that are thicker in proportion to their length.
Consider a roughly cylindrical bone such as a leg bone or a vertebra.
The length of the bone, L, is dictated by the overall linear size of the
animal, since the animal’s skeleton must reach the animal’s whole
length. We expect the animal’s mass to scale as L3, so the strength
of the bone must also scale as L3. Strength is proportional to cross-
sectional area, as with the wooden planks, so if the diameter of the
bone is d, then

d2 ∝ L3

or

d ∝ L3/2 .

If the shape stayed the same regardless of size, then all linear di-
mensions, including d and L, would be proportional to one another.
If our reasoning holds, then the fact that d is proportional to L3/2,
not L, implies a change in proportions of the bone. As shown in the
right-hand panel of figure p, the vertebrae of African Bovidae follow
the rule d ∝ L3/2 fairly well. The vertebrae of the giant eland are
as chunky as a coffee mug, while those of a Gunther’s dik-dik are as
slender as the cap of a pen.

Discussion Questions

A Single-celled animals must passively absorb nutrients and oxygen
from their surroundings, unlike humans who have lungs to pump air in and
out and a heart to distribute the oxygenated blood throughout their bodies.
Even the cells composing the bodies of multicellular animals must absorb
oxygen from a nearby capillary through their surfaces. Based on these
facts, explain why cells are always microscopic in size.

B The reasoning of the previous question would seem to be contra-
dicted by the fact that human nerve cells in the spinal cord can be as
much as a meter long, although their widths are still very small. Why is
this possible?
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1.4 Order-of-Magnitude Estimates
It is the mark of an instructed mind to rest satisfied with the
degree of precision that the nature of the subject permits and
not to seek an exactness where only an approximation of the
truth is possible.

Aristotle

It is a common misconception that science must be exact. For
instance, in the Star Trek TV series, it would often happen that
Captain Kirk would ask Mr. Spock, “Spock, we’re in a pretty bad
situation. What do you think are our chances of getting out of
here?” The scientific Mr. Spock would answer with something like,
“Captain, I estimate the odds as 237.345 to one.” In reality, he
could not have estimated the odds with six significant figures of
accuracy, but nevertheless one of the hallmarks of a person with a
good education in science is the ability to make estimates that are
likely to be at least somewhere in the right ballpark. In many such
situations, it is often only necessary to get an answer that is off by no
more than a factor of ten in either direction. Since things that differ
by a factor of ten are said to differ by one order of magnitude, such
an estimate is called an order-of-magnitude estimate. The tilde,
∼, is used to indicate that things are only of the same order of
magnitude, but not exactly equal, as in

odds of survival ∼ 100 to one .

The tilde can also be used in front of an individual number to em-
phasize that the number is only of the right order of magnitude.

Although making order-of-magnitude estimates seems simple and
natural to experienced scientists, it’s a mode of reasoning that is
completely unfamiliar to most college students. Some of the typical
mental steps can be illustrated in the following example.

Cost of transporting tomatoes example 4
. Roughly what percentage of the price of a tomato comes from
the cost of transporting it in a truck?

. The following incorrect solution illustrates one of the main ways
you can go wrong in order-of-magnitude estimates.

Incorrect solution: Let’s say the trucker needs to make a $400
profit on the trip. Taking into account her benefits, the cost of gas,
and maintenance and payments on the truck, let’s say the total
cost is more like $2000. I’d guess about 5000 tomatoes would fit
in the back of the truck, so the extra cost per tomato is 40 cents.
That means the cost of transporting one tomato is comparable to
the cost of the tomato itself. Transportation really adds a lot to the
cost of produce, I guess.

The problem is that the human brain is not very good at esti-
mating area or volume, so it turns out the estimate of 5000 tomatoes
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r / Consider a spherical cow.

fitting in the truck is way off. That’s why people have a hard time
at those contests where you are supposed to estimate the number of
jellybeans in a big jar. Another example is that most people think
their families use about 10 gallons of water per day, but in reality
the average is about 300 gallons per day. When estimating area
or volume, you are much better off estimating linear dimensions,
and computing volume from the linear dimensions. Here’s a better
solution:

Better solution: As in the previous solution, say the cost of the
trip is $2000. The dimensions of the bin are probably 4 m × 2 m ×
1 m, for a volume of 8 m3. Since the whole thing is just an order-
of-magnitude estimate, let’s round that off to the nearest power of
ten, 10 m3. The shape of a tomato is complicated, and I don’t know
any formula for the volume of a tomato shape, but since this is just
an estimate, let’s pretend that a tomato is a cube, 0.05 m × 0.05 m
× 0.05 m, for a volume of 1.25× 10−4 m3. Since this is just a rough
estimate, let’s round that to 10−4m3. We can find the total number
of tomatoes by dividing the volume of the bin by the volume of one
tomato: 10 m3/10−4 m3 = 105 tomatoes. The transportation cost
per tomato is $2000/105 tomatoes=$0.02/tomato. That means that
transportation really doesn’t contribute very much to the cost of a
tomato.

Approximating the shape of a tomato as a cube is an example of
another general strategy for making order-of-magnitude estimates.
A similar situation would occur if you were trying to estimate how
many m2 of leather could be produced from a herd of ten thousand
cattle. There is no point in trying to take into account the shape of
the cows’ bodies. A reasonable plan of attack might be to consider
a spherical cow. Probably a cow has roughly the same surface area
as a sphere with a radius of about 1 m, which would be 4π(1 m)2.
Using the well-known facts that pi equals three, and four times three
equals about ten, we can guess that a cow has a surface area of about
10 m2, so the herd as a whole might yield 105 m2 of leather.

The following list summarizes the strategies for getting a good
order-of-magnitude estimate.

1. Don’t even attempt more than one significant figure of preci-
sion.

2. Don’t guess area, volume, or mass directly. Guess linear di-
mensions and get area, volume, or mass from them.

3. When dealing with areas or volumes of objects with complex
shapes, idealize them as if they were some simpler shape, a
cube or a sphere, for example.

4. Check your final answer to see if it is reasonable. If you esti-
mate that a herd of ten thousand cattle would yield 0.01 m2
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of leather, then you have probably made a mistake with con-
version factors somewhere.
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Summary
Notation
∝ . . . . . . . . . is proportional to
∼ . . . . . . . . . on the order of, is on the order of

Summary

Nature behaves differently on large and small scales. Galileo
showed that this results fundamentally from the way area and vol-
ume scale. Area scales as the second power of length, A ∝ L2, while
volume scales as length to the third power, V ∝ L3.

An order of magnitude estimate is one in which we do not at-
tempt or expect an exact answer. The main reason why the unini-
tiated have trouble with order-of-magnitude estimates is that the
human brain does not intuitively make accurate estimates of area
and volume. Estimates of area and volume should be approached
by first estimating linear dimensions, which one’s brain has a feel
for.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 How many cubic inches are there in a cubic foot? The answer
is not 12.

√

2 Assume a dog’s brain is twice as great in diameter as a cat’s,
but each animal’s brain cells are the same size and their brains are
the same shape. In addition to being a far better companion and
much nicer to come home to, how many times more brain cells does
a dog have than a cat? The answer is not 2.

3 The population density of Los Angeles is about 4000 people/km2.
That of San Francisco is about 6000 people/km2. How many times
farther away is the average person’s nearest neighbor in LA than in
San Francisco? The answer is not 1.5.

√

4 A hunting dog’s nose has about 10 square inches of active
surface. How is this possible, since the dog’s nose is only about 1 in
× 1 in × 1 in = 1 in3? After all, 10 is greater than 1, so how can it
fit?

5 Estimate the number of blades of grass on a football field.

6 In a computer memory chip, each bit of information (a 0 or
a 1) is stored in a single tiny circuit etched onto the surface of a
silicon chip. The circuits cover the surface of the chip like lots in a
housing development. A typical chip stores 64 Mb (megabytes) of
data, where a byte is 8 bits. Estimate (a) the area of each circuit,
and (b) its linear size.

7 Suppose someone built a gigantic apartment building, mea-
suring 10 km × 10 km at the base. Estimate how tall the building
would have to be to have space in it for the entire world’s population
to live.

8 A hamburger chain advertises that it has sold 10 billion Bongo
Burgers. Estimate the total mass of feed required to raise the cows
used to make the burgers.

9 Estimate the volume of a human body, in cm3.

10 How many cm2 is 1 mm2? . Solution, p. 275

11 Compare the light-gathering powers of a 3-cm-diameter tele-
scope and a 30-cm telescope. . Solution, p. 275

12 One step on the Richter scale corresponds to a factor of 100
in terms of the energy absorbed by something on the surface of the
Earth, e.g., a house. For instance, a 9.3-magnitude quake would
release 100 times more energy than an 8.3. The energy spreads out
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Albert Einstein, and his mous-
tache, problem 14.

Problem 19.

from the epicenter as a wave, and for the sake of this problem we’ll
assume we’re dealing with seismic waves that spread out in three
dimensions, so that we can visualize them as hemispheres spreading
out under the surface of the earth. If a certain 7.6-magnitude earth-
quake and a certain 5.6-magnitude earthquake produce the same
amount of vibration where I live, compare the distances from my
house to the two epicenters. . Solution, p. 275

13 In Europe, a piece of paper of the standard size, called A4,
is a little narrower and taller than its American counterpart. The
ratio of the height to the width is the square root of 2, and this has
some useful properties. For instance, if you cut an A4 sheet from left
to right, you get two smaller sheets that have the same proportions.
You can even buy sheets of this smaller size, and they’re called A5.
There is a whole series of sizes related in this way, all with the same
proportions. (a) Compare an A5 sheet to an A4 in terms of area and
linear size. (b) The series of paper sizes starts from an A0 sheet,
which has an area of one square meter. Suppose we had a series
of boxes defined in a similar way: the B0 box has a volume of one
cubic meter, two B1 boxes fit exactly inside an B0 box, and so on.
What would be the dimensions of a B0 box?

√

14 Estimate the mass of one of the hairs in Albert Einstein’s
moustache, in units of kg.

15 According to folklore, every time you take a breath, you are
inhaling some of the atoms exhaled in Caesar’s last words. Is this
true? If so, how many?

16 The Earth’s surface is about 70% water. Mars’s diameter is
about half the Earth’s, but it has no surface water. Compare the
land areas of the two planets.

√

17 The traditional Martini glass is shaped like a cone with
the point at the bottom. Suppose you make a Martini by pouring
vermouth into the glass to a depth of 3 cm, and then adding gin
to bring the depth to 6 cm. What are the proportions of gin and
vermouth? . Solution, p. 275

18 The central portion of a CD is taken up by the hole and some
surrounding clear plastic, and this area is unavailable for storing
data. The radius of the central circle is about 35% of the outer
radius of the data-storing area. What percentage of the CD’s area
is therefore lost?

√

19 The one-liter cube in the photo has been marked off into
smaller cubes, with linear dimensions one tenth those of the big
one. What is the volume of each of the small cubes?

. Solution, p. 276
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Problem 20.

Problem 22.

20 (a) Based on the definitions of the sine, cosine, and tangent,
what units must they have? (b) A cute formula from trigonometry
lets you find any angle of a triangle if you know the lengths of
its sides. Using the notation shown in the figure, and letting s =
(a+ b+ c)/2 be half the perimeter, we have

tanA/2 =

√
(s− b)(s− c)
s(s− a)

.

Show that the units of this equation make sense. In other words,
check that the units of the right-hand side are the same as your
answer to part a of the question. . Solution, p. 276

21 Estimate the number of man-hours required for building the
Great Wall of China. . Solution, p. 276

22 (a) Using the microscope photo in the figure, estimate the
mass of a one cell of the E. coli bacterium, which is one of the
most common ones in the human intestine. Note the scale at the
lower right corner, which is 1 µm. Each of the tubular objects in
the column is one cell. (b) The feces in the human intestine are
mostly bacteria (some dead, some alive), of which E. coli is a large
and typical component. Estimate the number of bacteria in your
intestines, and compare with the number of human cells in your
body, which is believed to be roughly on the order of 1013. (c)
Interpreting your result from part b, what does this tell you about
the size of a typical human cell compared to the size of a typical
bacterial cell?

23 A taxon (plural taxa) is a group of living things. For ex-
ample, Homo sapiens and Homo neanderthalensis are both taxa —
specifically, they are two different species within the genus Homo.
Surveys by botanists show that the number of plant taxa native
to a given contiguous land area A is usually approximately propor-
tional to A1/3. (a) There are 70 different species of lupine native
to Southern California, which has an area of about 200, 000 km2.
The San Gabriel Mountains cover about 1, 600 km2. Suppose that
you wanted to learn to identify all the species of lupine in the San
Gabriels. Approximately how many species would you have to fa-
miliarize yourself with? . Answer, p. 285

√

(b) What is the interpretation of the fact that the exponent, 1/3, is
less than one?
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Problem 25.

24 X-ray images aren’t only used with human subjects but also,
for example, on insects and flowers. In 2003, a team of researchers
at Argonne National Laboratory used x-ray imagery to find for the
first time that insects, although they do not have lungs, do not
necessarily breathe completely passively, as had been believed pre-
viously; many insects rapidly compress and expand their trachea,
head, and thorax in order to force air in and out of their bodies.
One difference between x-raying a human and an insect is that if a
medical x-ray machine was used on an insect, virtually 100% of the
x-rays would pass through its body, and there would be no contrast
in the image produced. Less penetrating x-rays of lower energies
have to be used. For comparison, a typical human body mass is
about 70 kg, whereas a typical ant is about 10 mg. Estimate the
ratio of the thicknesses of tissue that must be penetrated by x-rays
in one case compared to the other.

√

25 Radio was first commercialized around 1920, and ever since
then, radio signals from our planet have been spreading out across
our galaxy. It is possible that alien civilizations could detect these
signals and learn that there is life on earth. In the 90 years that the
signals have been spreading at the speed of light, they have created
a sphere with a radius of 90 light-years. To show an idea of the
size of this sphere, I’ve indicated it in the figure as a tiny white
circle on an image of a spiral galaxy seen edge on. (We don’t have
similar photos of our own Milky Way galaxy, because we can’t see
it from the outside.) So far we haven’t received answering signals
from aliens within this sphere, but as time goes on, the sphere will
expand as suggested by the dashed outline, reaching more and more
stars that might harbor extraterrestrial life. Approximately what
year will it be when the sphere has expanded to fill a volume 100
times greater than the volume it fills today in 2010?

√
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Part I

Motion in One Dimension





I didn’t learn until I was nearly through with college that I could
understand a book much better if I mentally outlined it for myself
before I actually began reading. It’s a technique that warns my
brain to get little cerebral file folders ready for the different topics
I’m going to learn, and as I’m reading it allows me to say to myself,
“Oh, the reason they’re talking about this now is because they’re
preparing for this other thing that comes later,” or “I don’t need to
sweat the details of this idea now, because they’re going to explain
it in more detail later on.”

At this point, you’re about to dive in to the main subjects of
this book, which are force and motion. The concepts you’re going
to learn break down into the following three areas:

kinematics — how to describe motion numerically

dynamics — how force affects motion

vectors — a mathematical way of handling the three-dimensional
nature of force and motion

Roughly speaking, that’s the order in which we’ll cover these
three areas, but the earlier chapters do contain quite a bit of prepara-
tion for the later topics. For instance, even before the present point
in the book you’ve learned about the Newton, a unit of force. The
discussion of force properly belongs to dynamics, which we aren’t
tackling head-on for a few more chapters, but I’ve found that when
I teach kinematics it helps to be able to refer to forces now and then
to show why it makes sense to define certain kinematical concepts.
And although I don’t explicitly introduce vectors until ch. 8, the
groundwork is being laid for them in earlier chapters.

The figure on the next page is a roadmap to the rest of the book.
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a / Rotation.

b / Simultaneous rotation and
motion through space.

c / One person might say that the
tipping chair was only rotating in
a circle about its point of contact
with the floor, but another could
describe it as having both rotation
and motion through space.

Chapter 2

Velocity and Relative
Motion

2.1 Types of Motion
If you had to think consciously in order to move your body, you
would be severely disabled. Even walking, which we consider to
be no great feat, requires an intricate series of motions that your
cerebrum would be utterly incapable of coordinating. The task of
putting one foot in front of the other is controlled by the more prim-
itive parts of your brain, the ones that have not changed much since
the mammals and reptiles went their separate evolutionary ways.
The thinking part of your brain limits itself to general directives
such as “walk faster,” or “don’t step on her toes,” rather than mi-
cromanaging every contraction and relaxation of the hundred or so
muscles of your hips, legs, and feet.

Physics is all about the conscious understanding of motion, but
we’re obviously not immediately prepared to understand the most
complicated types of motion. Instead, we’ll use the divide-and-
conquer technique. We’ll first classify the various types of motion,
and then begin our campaign with an attack on the simplest cases.
To make it clear what we are and are not ready to consider, we need
to examine and define carefully what types of motion can exist.

Rigid-body motion distinguished from motion that changes
an object’s shape

Nobody, with the possible exception of Fred Astaire, can simply
glide forward without bending their joints. Walking is thus an ex-
ample in which there is both a general motion of the whole object
and a change in the shape of the object. Another example is the
motion of a jiggling water balloon as it flies through the air. We are
not presently attempting a mathematical description of the way in
which the shape of an object changes. Motion without a change in
shape is called rigid-body motion. (The word “body” is often used
in physics as a synonym for “object.”)

Center-of-mass motion as opposed to rotation

A ballerina leaps into the air and spins around once before land-
ing. We feel intuitively that her rigid-body motion while her feet
are off the ground consists of two kinds of motion going on simul-
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e / No matter what point you
hang the pear from, the string
lines up with the pear’s center
of mass. The center of mass
can therefore be defined as the
intersection of all the lines made
by hanging the pear in this way.
Note that the X in the figure
should not be interpreted as
implying that the center of mass
is on the surface — it is actually
inside the pear.

f / The circus performers hang
with the ropes passing through
their centers of mass.

taneously: a rotation and a motion of her body as a whole through
space, along an arc. It is not immediately obvious, however, what
is the most useful way to define the distinction between rotation
and motion through space. Imagine that you attempt to balance a
chair and it falls over. One person might say that the only motion
was a rotation about the chair’s point of contact with the floor, but
another might say that there was both rotation and motion down
and to the side.

d / The leaping dancer’s motion is complicated, but the motion of
her center of mass is simple.

It turns out that there is one particularly natural and useful way
to make a clear definition, but it requires a brief digression. Every
object has a balance point, referred to in physics as the center of
mass. For a two-dimensional object such as a cardboard cutout, the
center of mass is the point at which you could hang the object from
a string and make it balance. In the case of the ballerina (who is
likely to be three-dimensional unless her diet is particularly severe),
it might be a point either inside or outside her body, depending
on how she holds her arms. Even if it is not practical to attach a
string to the balance point itself, the center of mass can be defined
as shown in figure e.

Why is the center of mass concept relevant to the question of
classifying rotational motion as opposed to motion through space?
As illustrated in figures d and g, it turns out that the motion of an
object’s center of mass is nearly always far simpler than the motion
of any other part of the object. The ballerina’s body is a large object
with a complex shape. We might expect that her motion would be
much more complicated than the motion of a small, simply-shaped
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h / An improperly balanced
wheel has a center of mass that
is not at its geometric center.
When you get a new tire, the
mechanic clamps little weights to
the rim to balance the wheel.

i / This toy was intentionally
designed so that the mushroom-
shaped piece of metal on top
would throw off the center of
mass. When you wind it up, the
mushroom spins, but the center
of mass doesn’t want to move,
so the rest of the toy tends to
counter the mushroom’s motion,
causing the whole thing to jump
around.

object, say a marble, thrown up at the same angle as the angle at
which she leapt. But it turns out that the motion of the ballerina’s
center of mass is exactly the same as the motion of the marble. That
is, the motion of the center of mass is the same as the motion the
ballerina would have if all her mass was concentrated at a point. By
restricting our attention to the motion of the center of mass, we can
therefore simplify things greatly.

g / The same leaping dancer, viewed from above. Her center of
mass traces a straight line, but a point away from her center of mass,
such as her elbow, traces the much more complicated path shown by the
dots.

We can now replace the ambiguous idea of “motion as a whole
through space” with the more useful and better defined concept
of “center-of-mass motion.” The motion of any rigid body can be
cleanly split into rotation and center-of-mass motion. By this defini-
tion, the tipping chair does have both rotational and center-of-mass
motion. Concentrating on the center of mass motion allows us to
make a simplified model of the motion, as if a complicated object
like a human body was just a marble or a point-like particle. Science
really never deals with reality; it deals with models of reality.

Note that the word “center” in “center of mass” is not meant
to imply that the center of mass must lie at the geometrical center
of an object. A car wheel that has not been balanced properly has
a center of mass that does not coincide with its geometrical center.
An object such as the human body does not even have an obvious
geometrical center.

It can be helpful to think of the center of mass as the average
location of all the mass in the object. With this interpretation,
we can see for example that raising your arms above your head
raises your center of mass, since the higher position of the arms’
mass raises the average. We won’t be concerned right now with
calculating centers of mass mathematically; the relevant equations
are in chapter 4 of Conservation Laws.

Ballerinas and professional basketball players can create an illu-
sion of flying horizontally through the air because our brains intu-
itively expect them to have rigid-body motion, but the body does
not stay rigid while executing a grand jete or a slam dunk. The legs
are low at the beginning and end of the jump, but come up higher at
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j / A fixed point on the dancer’s body follows a trajectory that is flat-
ter than what we expect, creating an illusion of flight.

the middle. Regardless of what the limbs do, the center of mass will
follow the same arc, but the low position of the legs at the beginning
and end means that the torso is higher compared to the center of
mass, while in the middle of the jump it is lower compared to the
center of mass. Our eye follows the motion of the torso and tries
to interpret it as the center-of-mass motion of a rigid body. But
since the torso follows a path that is flatter than we expect, this
attempted interpretation fails, and we experience an illusion that
the person is flying horizontally.

k / Example 1.

The center of mass as an average example 1
. Explain how we know that the center of mass of each object is
at the location shown in figure k.

. The center of mass is a sort of average, so the height of the
centers of mass in 1 and 2 has to be midway between the two
squares, because that height is the average of the heights of the
two squares. Example 3 is a combination of examples 1 and
2, so we can find its center of mass by averaging the horizontal
positions of their centers of mass. In example 4, each square
has been skewed a little, but just as much mass has been moved
up as down, so the average vertical position of the mass hasn’t
changed. Example 5 is clearly not all that different from example
4, the main difference being a slight clockwise rotation, so just as
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l / The high-jumper’s body
passes over the bar, but his
center of mass passes under it.

m / Self-check B.

in example 4, the center of mass must be hanging in empty space,
where there isn’t actually any mass. Horizontally, the center of
mass must be between the heels and toes, or else it wouldn’t be
possible to stand without tipping over.

Another interesting example from the sports world is the high
jump, in which the jumper’s curved body passes over the bar, but
the center of mass passes under the bar! Here the jumper lowers his
legs and upper body at the peak of the jump in order to bring his
waist higher compared to the center of mass.

Later in this course, we’ll find that there are more fundamental
reasons (based on Newton’s laws of motion) why the center of mass
behaves in such a simple way compared to the other parts of an
object. We’re also postponing any discussion of numerical methods
for finding an object’s center of mass. Until later in the course, we
will only deal with the motion of objects’ centers of mass.

Center-of-mass motion in one dimension

In addition to restricting our study of motion to center-of-mass
motion, we will begin by considering only cases in which the center
of mass moves along a straight line. This will include cases such
as objects falling straight down, or a car that speeds up and slows
down but does not turn.

Note that even though we are not explicitly studying the more
complex aspects of motion, we can still analyze the center-of-mass
motion while ignoring other types of motion that might be occurring
simultaneously . For instance, if a cat is falling out of a tree and
is initially upside-down, it goes through a series of contortions that
bring its feet under it. This is definitely not an example of rigid-
body motion, but we can still analyze the motion of the cat’s center
of mass just as we would for a dropping rock.

self-check A
Consider a person running, a person pedaling on a bicycle, a person
coasting on a bicycle, and a person coasting on ice skates. In which
cases is the center-of-mass motion one-dimensional? Which cases are
examples of rigid-body motion? . Answer, p. 272

self-check B
The figure shows a gymnast holding onto the inside of a big wheel.
From inside the wheel, how could he make it roll one way or the other?
. Answer, p. 272

2.2 Describing Distance and Time
Center-of-mass motion in one dimension is particularly easy to deal
with because all the information about it can be encapsulated in two
variables: x, the position of the center of mass relative to the origin,
and t, which measures a point in time. For instance, if someone
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supplied you with a sufficiently detailed table of x and t values, you
would know pretty much all there was to know about the motion of
the object’s center of mass.

A point in time as opposed to duration

In ordinary speech, we use the word “time” in two different
senses, which are to be distinguished in physics. It can be used,
as in “a short time” or “our time here on earth,” to mean a length
or duration of time, or it can be used to indicate a clock reading, as
in “I didn’t know what time it was,” or “now’s the time.” In sym-
bols, t is ordinarily used to mean a point in time, while ∆t signifies
an interval or duration in time. The capital Greek letter delta, ∆,
means “the change in...,” i.e. a duration in time is the change or
difference between one clock reading and another. The notation ∆t
does not signify the product of two numbers, ∆ and t, but rather
one single number, ∆t. If a matinee begins at a point in time t = 1
o’clock and ends at t = 3 o’clock, the duration of the movie was the
change in t,

∆t = 3 hours− 1 hour = 2 hours .

To avoid the use of negative numbers for ∆t, we write the clock
reading “after” to the left of the minus sign, and the clock reading
“before” to the right of the minus sign. A more specific definition
of the delta notation is therefore that delta stands for “after minus
before.”

Even though our definition of the delta notation guarantees that
∆t is positive, there is no reason why t can’t be negative. If t
could not be negative, what would have happened one second before
t = 0? That doesn’t mean that time “goes backward” in the sense
that adults can shrink into infants and retreat into the womb. It
just means that we have to pick a reference point and call it t = 0,
and then times before that are represented by negative values of t.
An example is that a year like 2007 A.D. can be thought of as a
positive t value, while one like 370 B.C. is negative. Similarly, when
you hear a countdown for a rocket launch, the phrase “t minus ten
seconds” is a way of saying t = −10 s, where t = 0 is the time of
blastoff, and t > 0 refers to times after launch.

Although a point in time can be thought of as a clock reading, it
is usually a good idea to avoid doing computations with expressions
such as “2:35” that are combinations of hours and minutes. Times
can instead be expressed entirely in terms of a single unit, such as
hours. Fractions of an hour can be represented by decimals rather
than minutes, and similarly if a problem is being worked in terms
of minutes, decimals can be used instead of seconds.

self-check C
Of the following phrases, which refer to points in time, which refer to
time intervals, and which refer to time in the abstract rather than as a
measurable number?
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(1) “The time has come.”

(2) “Time waits for no man.”

(3) “The whole time, he had spit on his chin.” . Answer, p. 272

Position as opposed to change in position

As with time, a distinction should be made between a point
in space, symbolized as a coordinate x, and a change in position,
symbolized as ∆x.

As with t,x can be negative. If a train is moving down the
tracks, not only do you have the freedom to choose any point along
the tracks and call it x = 0, but it’s also up to you to decide which
side of the x = 0 point is positive x and which side is negative x.

Since we’ve defined the delta notation to mean “after minus
before,” it is possible that ∆x will be negative, unlike ∆t which is
guaranteed to be positive. Suppose we are describing the motion
of a train on tracks linking Tucson and Chicago. As shown in the
figure, it is entirely up to you to decide which way is positive.

n / Two equally valid ways of de-
scribing the motion of a train from
Tucson to Chicago. In example 1,
the train has a positive ∆x as it
goes from Enid to Joplin. In 2,
the same train going forward in
the same direction has a negative
∆x .

Note that in addition to x and ∆x, there is a third quantity we
could define, which would be like an odometer reading, or actual
distance traveled. If you drive 10 miles, make a U-turn, and drive
back 10 miles, then your ∆x is zero, but your car’s odometer reading
has increased by 20 miles. However important the odometer reading
is to car owners and used car dealers, it is not very important in
physics, and there is not even a standard name or notation for it.
The change in position, ∆x, is more useful because it is so much
easier to calculate: to compute ∆x, we only need to know the be-
ginning and ending positions of the object, not all the information
about how it got from one position to the other.

self-check D
A ball falls vertically, hits the floor, bounces to a height of one meter,
falls, and hits the floor again. Is the ∆x between the two impacts equal
to zero, one, or two meters? . Answer, p. 273
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o / Motion with constant ve-
locity.

p / Motion that decreases x
is represented with negative
values of ∆x and v .

q / Motion with changing ve-
locity.

Frames of reference

The example above shows that there are two arbitrary choices
you have to make in order to define a position variable, x. You have
to decide where to put x = 0, and also which direction will be posi-
tive. This is referred to as choosing a coordinate system or choosing
a frame of reference. (The two terms are nearly synonymous, but
the first focuses more on the actual x variable, while the second is
more of a general way of referring to one’s point of view.) As long as
you are consistent, any frame is equally valid. You just don’t want
to change coordinate systems in the middle of a calculation.

Have you ever been sitting in a train in a station when suddenly
you notice that the station is moving backward? Most people would
describe the situation by saying that you just failed to notice that
the train was moving — it only seemed like the station was moving.
But this shows that there is yet a third arbitrary choice that goes
into choosing a coordinate system: valid frames of reference can
differ from each other by moving relative to one another. It might
seem strange that anyone would bother with a coordinate system
that was moving relative to the earth, but for instance the frame of
reference moving along with a train might be far more convenient
for describing things happening inside the train.

2.3 Graphs of Motion; Velocity

Motion with constant velocity

In example o, an object is moving at constant speed in one di-
rection. We can tell this because every two seconds, its position
changes by five meters.

In algebra notation, we’d say that the graph of x vs. t shows
the same change in position, ∆x = 5.0 m, over each interval of
∆t = 2.0 s. The object’s velocity or speed is obtained by calculating
v = ∆x/∆t = (5.0 m)/(2.0 s) = 2.5 m/s. In graphical terms, the
velocity can be interpreted as the slope of the line. Since the graph
is a straight line, it wouldn’t have mattered if we’d taken a longer
time interval and calculated v = ∆x/∆t = (10.0 m)/(4.0 s). The
answer would still have been the same, 2.5 m/s.

Note that when we divide a number that has units of meters by
another number that has units of seconds, we get units of meters
per second, which can be written m/s. This is another case where
we treat units as if they were algebra symbols, even though they’re
not.

In example p, the object is moving in the opposite direction: as
time progresses, its x coordinate decreases. Recalling the definition
of the ∆ notation as “after minus before,” we find that ∆t is still
positive, but ∆x must be negative. The slope of the line is therefore
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r / The velocity at any given
moment is defined as the slope
of the tangent line through the
relevant point on the graph.

s / Example: finding the ve-
locity at the point indicated with
the dot.

t / Reversing the direction of
motion.

negative, and we say that the object has a negative velocity, v =
∆x/∆t = (−5.0 m)/(2.0 s) = −2.5 m/s. We’ve already seen that
the plus and minus signs of ∆x values have the interpretation of
telling us which direction the object moved. Since ∆t is always
positive, dividing by ∆t doesn’t change the plus or minus sign, and
the plus and minus signs of velocities are to be interpreted in the
same way. In graphical terms, a positive slope characterizes a line
that goes up as we go to the right, and a negative slope tells us that
the line went down as we went to the right.

. Solved problem: light-years page 89, problem 4

Motion with changing velocity

Now what about a graph like figure q? This might be a graph
of a car’s motion as the driver cruises down the freeway, then slows
down to look at a car crash by the side of the road, and then speeds
up again, disappointed that there is nothing dramatic going on such
as flames or babies trapped in their car seats. (Note that we are
still talking about one-dimensional motion. Just because the graph
is curvy doesn’t mean that the car’s path is curvy. The graph is not
like a map, and the horizontal direction of the graph represents the
passing of time, not distance.)

Example q is similar to example o in that the object moves a
total of 25.0 m in a period of 10.0 s, but it is no longer true that it
makes the same amount of progress every second. There is no way to
characterize the entire graph by a certain velocity or slope, because
the velocity is different at every moment. It would be incorrect to
say that because the car covered 25.0 m in 10.0 s, its velocity was
2.5 m/s. It moved faster than that at the beginning and end, but
slower in the middle. There may have been certain instants at which
the car was indeed going 2.5 m/s, but the speedometer swept past
that value without “sticking,” just as it swung through various other
values of speed. (I definitely want my next car to have a speedometer
calibrated in m/s and showing both negative and positive values.)

We assume that our speedometer tells us what is happening to
the speed of our car at every instant, but how can we define speed
mathematically in a case like this? We can’t just define it as the
slope of the curvy graph, because a curve doesn’t have a single
well-defined slope as does a line. A mathematical definition that
corresponded to the speedometer reading would have to be one that
attached a different velocity value to a single point on the curve,
i.e., a single instant in time, rather than to the entire graph. If we
wish to define the speed at one instant such as the one marked with
a dot, the best way to proceed is illustrated in r, where we have
drawn the line through that point called the tangent line, the line
that “hugs the curve.” We can then adopt the following definition
of velocity:
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definition of velocity
The velocity of an object at any given moment is the slope of the
tangent line through the relevant point on its x− t graph.

One interpretation of this definition is that the velocity tells us
how many meters the object would have traveled in one second, if
it had continued moving at the same speed for at least one second.
To some people the graphical nature of this definition seems “in-
accurate” or “not mathematical.” The equation by itself, however,
is only valid if the velocity is constant, and so cannot serve as a
general definition.

The slope of the tangent line example 2
. What is the velocity at the point shown with a dot on the graph?

. First we draw the tangent line through that point. To find the
slope of the tangent line, we need to pick two points on it. Theo-
retically, the slope should come out the same regardless of which
two points we pick, but in practical terms we’ll be able to measure
more accurately if we pick two points fairly far apart, such as the
two white diamonds. To save work, we pick points that are directly
above labeled points on the t axis, so that ∆t = 4.0 s is easy to
read off. One diamond lines up with x ≈ 17.5 m, the other with
x ≈ 26.5 m, so ∆x = 9.0 m. The velocity is ∆x/∆t = 2.2 m/s.

Conventions about graphing

The placement of t on the horizontal axis and x on the upright
axis may seem like an arbitrary convention, or may even have dis-
turbed you, since your algebra teacher always told you that x goes
on the horizontal axis and y goes on the upright axis. There is a
reason for doing it this way, however. In example s, we have an
object that reverses its direction of motion twice. It can only be
in one place at any given time, but there can be more than one
time when it is at a given place. For instance, this object passed
through x = 17 m on three separate occasions, but there is no way
it could have been in more than one place at t = 5.0 s. Resurrecting
some terminology you learned in your trigonometry course, we say
that x is a function of t, but t is not a function of x. In situations
such as this, there is a useful convention that the graph should be
oriented so that any vertical line passes through the curve at only
one point. Putting the x axis across the page and t upright would
have violated this convention. To people who are used to interpret-
ing graphs, a graph that violates this convention is as annoying as
fingernails scratching on a chalkboard. We say that this is a graph
of “x versus t.” If the axes were the other way around, it would
be a graph of “t versus x.” I remember the “versus” terminology
by visualizing the labels on the x and t axes and remembering that
when you read, you go from left to right and from top to bottom.
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Discussion question G.

Discussion Questions

A Park is running slowly in gym class, but then he notices Jenna
watching him, so he speeds up to try to impress her. Which of the graphs
could represent his motion?

B The figure shows a sequence of positions for two racing tractors.
Compare the tractors’ velocities as the race progresses. When do they
have the same velocity? [Based on a question by Lillian McDermott.]

C If an object had an x − t graph that was a straight line with ∆x=0
and ∆t 6= 0, what would you say about its velocity? Sketch an example of
such a graph. What about ∆t=0 and ∆x 6= 0?

D If an object has a wavy motion graph like the one in figure t on
the previous page, which are the points at which the object reverses its
direction? What is true about the object’s velocity at these points?

E Discuss anything unusual about the following three graphs.

F I have been using the term “velocity” and avoiding the more common
English word “speed,” because introductory physics texts typically define
them to mean different things. They use the word “speed,” and the symbol
“s” to mean the absolute value of the velocity, s = |v |. Although I’ve
chosen not to emphasize this distinction in technical vocabulary, there
are clearly two different concepts here. Can you think of an example of
a graph of x-versus-t in which the object has constant speed, but not
constant velocity?
G For the graph shown in the figure, describe how the object’s velocity
changes.

H Two physicists duck out of a boring scientific conference. On the
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street, they witness an accident in which a pedestrian is injured by a hit-
and-run driver. A criminal trial results, and they must testify. In her testi-
mony, Dr. Transverz Waive says, “The car was moving along pretty fast,
I’d say the velocity was +40 mi/hr. They saw the old lady too late, and even
though they slammed on the brakes they still hit her before they stopped.
Then they made a U turn and headed off at a velocity of about -20 mi/hr,
I’d say.” Dr. Longitud N.L. Vibrasheun says, “He was really going too fast,
maybe his velocity was -35 or -40 mi/hr. After he hit Mrs. Hapless, he
turned around and left at a velocity of, oh, I’d guess maybe +20 or +25
mi/hr.” Is their testimony contradictory? Explain.

2.4 The Principle of Inertia
Physical effects relate only to a change in velocity

Consider two statements of a kind that was at one time made
with the utmost seriousness:

People like Galileo and Copernicus who say the earth is ro-
tating must be crazy. We know the earth can’t be moving.
Why, if the earth was really turning once every day, then our
whole city would have to be moving hundreds of leagues in
an hour. That’s impossible! Buildings would shake on their
foundations. Gale-force winds would knock us over. Trees
would fall down. The Mediterranean would come sweeping
across the east coasts of Spain and Italy. And furthermore,
what force would be making the world turn?

All this talk of passenger trains moving at forty miles an hour
is sheer hogwash! At that speed, the air in a passenger com-
partment would all be forced against the back wall. People in
the front of the car would suffocate, and people at the back
would die because in such concentrated air, they wouldn’t be
able to expel a breath.

Some of the effects predicted in the first quote are clearly just
based on a lack of experience with rapid motion that is smooth and
free of vibration. But there is a deeper principle involved. In each
case, the speaker is assuming that the mere fact of motion must
have dramatic physical effects. More subtly, they also believe that a
force is needed to keep an object in motion: the first person thinks
a force would be needed to maintain the earth’s rotation, and the
second apparently thinks of the rear wall as pushing on the air to
keep it moving.

Common modern knowledge and experience tell us that these
people’s predictions must have somehow been based on incorrect
reasoning, but it is not immediately obvious where the fundamental
flaw lies. It’s one of those things a four-year-old could infuriate
you by demanding a clear explanation of. One way of getting at
the fundamental principle involved is to consider how the modern
concept of the universe differs from the popular conception at the
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v / Why does Aristotle look
so sad? Has he realized that
his entire system of physics is
wrong?

w / The earth spins. People
in Shanghai say they’re at rest
and people in Los Angeles are
moving. Angelenos say the same
about the Shanghainese.

x / The jets are at rest. The
Empire State Building is moving.

time of the Italian Renaissance. To us, the word “earth” implies
a planet, one of the nine planets of our solar system, a small ball
of rock and dirt that is of no significance to anyone in the universe
except for members of our species, who happen to live on it. To
Galileo’s contemporaries, however, the earth was the biggest, most
solid, most important thing in all of creation, not to be compared
with the wandering lights in the sky known as planets. To us, the
earth is just another object, and when we talk loosely about “how
fast” an object such as a car “is going,” we really mean the car-
object’s velocity relative to the earth-object.

u / This Air Force doctor volunteered to ride a rocket sled as a
medical experiment. The obvious effects on his head and face are not
because of the sled’s speed but because of its rapid changes in speed:
increasing in 2 and 3, and decreasing in 5 and 6. In 4 his speed is
greatest, but because his speed is not increasing or decreasing very
much at this moment, there is little effect on him.

Motion is relative
According to our modern world-view, it really isn’t that reason-

able to expect that a special force should be required to make the
air in the train have a certain velocity relative to our planet. After
all, the “moving” air in the “moving” train might just happen to
have zero velocity relative to some other planet we don’t even know
about. Aristotle claimed that things “naturally” wanted to be at
rest, lying on the surface of the earth. But experiment after exper-
iment has shown that there is really nothing so special about being
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Discussion question A.

Discussion question B.

Discussion question D.

at rest relative to the earth. For instance, if a mattress falls out of
the back of a truck on the freeway, the reason it rapidly comes to
rest with respect to the planet is simply because of friction forces
exerted by the asphalt, which happens to be attached to the planet.

Galileo’s insights are summarized as follows:

The principle of inertia
No force is required to maintain motion with constant velocity in
a straight line, and absolute motion does not cause any observable
physical effects.

There are many examples of situations that seem to disprove the
principle of inertia, but these all result from forgetting that friction
is a force. For instance, it seems that a force is needed to keep a
sailboat in motion. If the wind stops, the sailboat stops too. But
the wind’s force is not the only force on the boat; there is also a
frictional force from the water. If the sailboat is cruising and the
wind suddenly disappears, the backward frictional force still exists,
and since it is no longer being counteracted by the wind’s forward
force, the boat stops. To disprove the principle of inertia, we would
have to find an example where a moving object slowed down even
though no forces whatsoever were acting on it.

self-check E
What is incorrect about the following supposed counterexamples to the
principle of inertia?

(1) When astronauts blast off in a rocket, their huge velocity does cause
a physical effect on their bodies — they get pressed back into their
seats, the flesh on their faces gets distorted, and they have a hard time
lifting their arms.

(2) When you’re driving in a convertible with the top down, the wind in
your face is an observable physical effect of your absolute motion. .

Answer, p. 273

. Solved problem: a bug on a wheel page 89, problem 7

Discussion Questions
A A passenger on a cruise ship finds, while the ship is docked, that
he can leap off of the upper deck and just barely make it into the pool
on the lower deck. If the ship leaves dock and is cruising rapidly, will this
adrenaline junkie still be able to make it?

B You are a passenger in the open basket hanging under a helium
balloon. The balloon is being carried along by the wind at a constant
velocity. If you are holding a flag in your hand, will the flag wave? If so,
which way? [Based on a question from PSSC Physics.]

C Aristotle stated that all objects naturally wanted to come to rest, with
the unspoken implication that “rest” would be interpreted relative to the
surface of the earth. Suppose we go back in time and transport Aristotle
to the moon. Aristotle knew, as we do, that the moon circles the earth; he
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said it didn’t fall down because, like everything else in the heavens, it was
made out of some special substance whose “natural” behavior was to go
in circles around the earth. We land, put him in a space suit, and kick
him out the door. What would he expect his fate to be in this situation? If
intelligent creatures inhabited the moon, and one of them independently
came up with the equivalent of Aristotelian physics, what would they think
about objects coming to rest?

D The glass is sitting on a level table in a train’s dining car, but the
surface of the water is tilted. What can you infer about the motion of the
train?

2.5 Addition of Velocities
Addition of velocities to describe relative motion

Since absolute motion cannot be unambiguously measured, the
only way to describe motion unambiguously is to describe the motion
of one object relative to another. Symbolically, we can write vPQ

for the velocity of object P relative to object Q.

Velocities measured with respect to different reference points can
be compared by addition. In the figure below, the ball’s velocity
relative to the couch equals the ball’s velocity relative to the truck
plus the truck’s velocity relative to the couch:

vBC = vBT + vTC

= 5 cm/s + 10 cm/s

= 15 cm/s

The same equation can be used for any combination of three
objects, just by substituting the relevant subscripts for B, T, and
C. Just remember to write the equation so that the velocities being
added have the same subscript twice in a row. In this example, if
you read off the subscripts going from left to right, you get BC . . . =
. . .BTTC. The fact that the two “inside” subscripts on the right are
the same means that the equation has been set up correctly. Notice
how subscripts on the left look just like the subscripts on the right,
but with the two T’s eliminated.

Negative velocities in relative motion

My discussion of how to interpret positive and negative signs of
velocity may have left you wondering why we should bother. Why
not just make velocity positive by definition? The original reason
why negative numbers were invented was that bookkeepers decided
it would be convenient to use the negative number concept for pay-
ments to distinguish them from receipts. It was just plain easier than
writing receipts in black and payments in red ink. After adding up
your month’s positive receipts and negative payments, you either got
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y / These two highly competent physicists disagree on absolute ve-
locities, but they would agree on relative velocities. Purple Dino
considers the couch to be at rest, while Green Dino thinks of the truck as
being at rest. They agree, however, that the truck’s velocity relative to the
couch is vTC = 10 cm/s, the ball’s velocity relative to the truck is vBT = 5
cm/s, and the ball’s velocity relative to the couch is vBC = vBT + vTC = 15
cm/s.

a positive number, indicating profit, or a negative number, showing
a loss. You could then show that total with a high-tech “+” or “−”
sign, instead of looking around for the appropriate bottle of ink.

Nowadays we use positive and negative numbers for all kinds
of things, but in every case the point is that it makes sense to
add and subtract those things according to the rules you learned
in grade school, such as “minus a minus makes a plus, why this is
true we need not discuss.” Adding velocities has the significance
of comparing relative motion, and with this interpretation negative
and positive velocities can be used within a consistent framework.
For example, the truck’s velocity relative to the couch equals the
truck’s velocity relative to the ball plus the ball’s velocity relative
to the couch:

vTC = vTB + vBC

= −5 cm/s + 15 cm/s

= 10 cm/s

If we didn’t have the technology of negative numbers, we would have
had to remember a complicated set of rules for adding velocities: (1)
if the two objects are both moving forward, you add, (2) if one is
moving forward and one is moving backward, you subtract, but (3)
if they’re both moving backward, you add. What a pain that would
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z / Graphs of x and v versus
t for a car accelerating away from
a traffic light, and then stopping
for another red light.

have been.

. Solved problem: two dimensions page 90, problem 10

Discussion Questions

A Interpret the general rule vAB = −vBA in words.

B Wa-Chuen slips away from her father at the mall and walks up the
down escalator, so that she stays in one place. Write this in terms of
symbols.

2.6 Graphs of Velocity Versus Time
Since changes in velocity play such a prominent role in physics, we
need a better way to look at changes in velocity than by laboriously
drawing tangent lines on x-versus-t graphs. A good method is to
draw a graph of velocity versus time. The examples on the left show
the x− t and v− t graphs that might be produced by a car starting
from a traffic light, speeding up, cruising for a while at constant
speed, and finally slowing down for a stop sign. If you have an air
freshener hanging from your rear-view mirror, then you will see an
effect on the air freshener during the beginning and ending periods
when the velocity is changing, but it will not be tilted during the
period of constant velocity represented by the flat plateau in the
middle of the v − t graph.

Students often mix up the things being represented on these two
types of graphs. For instance, many students looking at the top
graph say that the car is speeding up the whole time, since “the
graph is becoming greater.” What is getting greater throughout the
graph is x, not v.

Similarly, many students would look at the bottom graph and
think it showed the car backing up, because “it’s going backwards
at the end.” But what is decreasing at the end is v, not x. Having
both the x − t and v − t graphs in front of you like this is often
convenient, because one graph may be easier to interpret than the
other for a particular purpose. Stacking them like this means that
corresponding points on the two graphs’ time axes are lined up with
each other vertically. However, one thing that is a little counter-
intuitive about the arrangement is that in a situation like this one
involving a car, one is tempted to visualize the landscape stretching
along the horizontal axis of one of the graphs. The horizontal axes,
however, represent time, not position. The correct way to visualize
the landscape is by mentally rotating the horizon 90 degrees coun-
terclockwise and imagining it stretching along the upright axis of the
x-t graph, which is the only axis that represents different positions
in space.
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2.7
∫

Applications of Calculus
The integral symbol,

∫
, in the heading for this section indicates that

it is meant to be read by students in calculus-based physics. Stu-
dents in an algebra-based physics course should skip these sections.
The calculus-related sections in this book are meant to be usable
by students who are taking calculus concurrently, so at this early
point in the physics course I do not assume you know any calculus
yet. This section is therefore not much more than a quick preview of
calculus, to help you relate what you’re learning in the two courses.

Newton was the first person to figure out the tangent-line defi-
nition of velocity for cases where the x − t graph is nonlinear. Be-
fore Newton, nobody had conceptualized the description of motion
in terms of x − t and v − t graphs. In addition to the graphical
techniques discussed in this chapter, Newton also invented a set of
symbolic techniques called calculus. If you have an equation for x
in terms of t, calculus allows you, for instance, to find an equation
for v in terms of t. In calculus terms, we say that the function v(t)
is the derivative of the function x(t). In other words, the derivative
of a function is a new function that tells how rapidly the original
function was changing. We now use neither Newton’s name for his
technique (he called it “the method of fluxions”) nor his notation.
The more commonly used notation is due to Newton’s German con-
temporary Leibnitz, whom the English accused of plagiarizing the
calculus from Newton. In the Leibnitz notation, we write

v =
dx

dt

to indicate that the function v(t) equals the slope of the tangent line
of the graph of x(t) at every time t. The Leibnitz notation is meant
to evoke the delta notation, but with a very small time interval.
Because the dx and dt are thought of as very small ∆x’s and ∆t’s,
i.e., very small differences, the part of calculus that has to do with
derivatives is called differential calculus.

Differential calculus consists of three things:

• The concept and definition of the derivative, which is covered
in this book, but which will be discussed more formally in your
math course.

• The Leibnitz notation described above, which you’ll need to
get more comfortable with in your math course.

• A set of rules that allows you to find an equation for the deriva-
tive of a given function. For instance, if you happened to have
a situation where the position of an object was given by the
equation x = 2t7, you would be able to use those rules to
find dx/dt = 14t6. This bag of tricks is covered in your math
course.
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Summary
Selected Vocabulary
center of mass . . the balance point of an object
velocity . . . . . . the rate of change of position; the slope of the

tangent line on an x− t graph.

Notation
x . . . . . . . . . . a point in space
t . . . . . . . . . . a point in time, a clock reading
∆ . . . . . . . . . “change in;” the value of a variable afterwards

minus its value before
∆x . . . . . . . . a distance, or more precisely a change in x,

which may be less than the distance traveled;
its plus or minus sign indicates direction

∆t . . . . . . . . . a duration of time
v . . . . . . . . . . velocity
vAB . . . . . . . . the velocity of object A relative to object B

Other Terminology and Notation
displacement . . a name for the symbol ∆x
speed . . . . . . . the absolute value of the velocity, i.e., the ve-

locity stripped of any information about its
direction

Summary

An object’s center of mass is the point at which it can be bal-
anced. For the time being, we are studying the mathematical de-
scription only of the motion of an object’s center of mass in cases
restricted to one dimension. The motion of an object’s center of
mass is usually far simpler than the motion of any of its other parts.

It is important to distinguish location, x, from distance, ∆x,
and clock reading, t, from time interval ∆t. When an object’s x− t
graph is linear, we define its velocity as the slope of the line, ∆x/∆t.
When the graph is curved, we generalize the definition so that the
velocity is the slope of the tangent line at a given point on the graph.

Galileo’s principle of inertia states that no force is required to
maintain motion with constant velocity in a straight line, and abso-
lute motion does not cause any observable physical effects. Things
typically tend to reduce their velocity relative to the surface of our
planet only because they are physically rubbing against the planet
(or something attached to the planet), not because there is anything
special about being at rest with respect to the earth’s surface. When
it seems, for instance, that a force is required to keep a book sliding
across a table, in fact the force is only serving to cancel the contrary
force of friction.

Absolute motion is not a well-defined concept, and if two ob-
servers are not at rest relative to one another they will disagree
about the absolute velocities of objects. They will, however, agree
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about relative velocities. If object A is in motion relative to object
B, and B is in motion relative to C, then A’s velocity relative to C
is given by vAC = vAB + vBC . Positive and negative signs are used
to indicate the direction of an object’s motion.
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Problem 1.

Problem 7.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 The graph shows the motion of a car stuck in stop-and-go
freeway traffic. (a) If you only knew how far the car had gone
during this entire time period, what would you think its velocity
was? (b) What is the car’s maximum velocity?

√

2 (a) Let θ be the latitude of a point on the Earth’s surface.
Derive an algebra equation for the distance, L, traveled by that
point during one rotation of the Earth about its axis, i.e., over one
day, expressed in terms of θ and R, the radius of the earth. Check:
Your equation should give L = 0 for the North Pole.
(b) At what speed is Fullerton, at latitude θ = 34 ◦, moving with
the rotation of the Earth about its axis? Give your answer in units
of mi/h. [See the table in the back of the book for the relevant
data.]

√

3 A person is parachute jumping. During the time between
when she leaps out of the plane and when she opens her chute, her
altitude is given by the equation

y = (10000 m)− (50 m/s)
[
t+ (5.0 s)e−t/5.0 s

]
.

Find her velocity at t = 7.0 s. (This can be done on a calculator,
without knowing calculus.) Because of air resistance, her velocity
does not increase at a steady rate as it would for an object falling
in vacuum.

√
?

4 A light-year is a unit of distance used in astronomy, and defined
as the distance light travels in one year. The speed of light is 3.0×108

m/s. Find how many meters there are in one light-year, expressing
your answer in scientific notation. . Solution, p. 276

5 You’re standing in a freight train, and have no way to see out.
If you have to lean to stay on your feet, what, if anything, does that
tell you about the train’s velocity? Explain. . Solution, p. 276

6 A honeybee’s position as a function of time is given by x =
10t− t3, where t is in seconds and x in meters. What is its velocity
at t = 3.0 s?

∫
7 The figure shows the motion of a point on the rim of a rolling
wheel. (The shape is called a cycloid.) Suppose bug A is riding on
the rim of the wheel on a bicycle that is rolling, while bug B is on
the spinning wheel of a bike that is sitting upside down on the floor.
Bug A is moving along a cycloid, while bug B is moving in a circle.
Both wheels are doing the same number of revolutions per minute.
Which bug has a harder time holding on, or do they find it equally
difficult? . Solution, p. 276
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Problem 8.

8 Peanut plants fold up their leaves at night. Estimate the top
speed of the tip of one of the leaves shown in the figure, expressing
your result in scientific notation in SI units.

√

9 (a) Translate the following information into symbols, using
the notation with two subscripts introduced in section 2.5. Eowyn
is riding on her horse at a velocity of 11 m/s. She twists around in
her saddle and fires an arrow backward. Her bow fires arrows at 25
m/s. (b) Find the velocity of the arrow relative to the ground.

10 Our full discussion of two- and three-dimensional motion is
postponed until the second half of the book, but here is a chance to
use a little mathematical creativity in anticipation of that general-
ization. Suppose a ship is sailing east at a certain speed v, and a
passenger is walking across the deck at the same speed v, so that
his track across the deck is perpendicular to the ship’s center-line.
What is his speed relative to the water, and in what direction is he
moving relative to the water? . Solution, p. 276

11 Freddi Fish(TM) has a position as a function of time given by
x = a/(b+ t2). Find her maximum speed.

∫
12 Driving along in your car, you take your foot off the gas,
and your speedometer shows a reduction in speed. Describe a frame
of reference in which your car was speeding up during that same
period of time. (The frame of reference should be defined by an
observer who, although perhaps in motion relative to the earth, is
not changing her own speed or direction of motion.)

13 The figure shows the motion of a bluefin tuna, as measured
by a radio tag (Block et al., Nature, v. 434, p. 1121, 2005), over
the course of several years. Until this study, it had been believed
that the populations of the fish in the eastern and western Atlantic
were separate, but this particular fish was observed to cross the
entire Atlantic Ocean, from Virginia to Ireland. Points A, B, and C
show a period of one month, during which the fish made the most
rapid progress. Estimate its speed during that month, in units of
kilometers per hour.

√

Problem 13.
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Galileo’s contradiction of Aristotle had serious consequences. He was
interrogated by the Church authorities and convicted of teaching that the
earth went around the sun as a matter of fact and not, as he had promised
previously, as a mere mathematical hypothesis. He was placed under per-
manent house arrest, and forbidden to write about or teach his theories.
Immediately after being forced to recant his claim that the earth revolved
around the sun, the old man is said to have muttered defiantly “and yet
it does move.” The story is dramatic, but there are some omissions in
the commonly taught heroic version. There was a rumor that the Sim-
plicio character represented the Pope. Also, some of the ideas Galileo
advocated had controversial religious overtones. He believed in the exis-
tence of atoms, and atomism was thought by some people to contradict
the Church’s doctrine of transubstantiation, which said that in the Catholic
mass, the blessing of the bread and wine literally transformed them into
the flesh and blood of Christ. His support for a cosmology in which the
earth circled the sun was also disreputable because one of its support-
ers, Giordano Bruno, had also proposed a bizarre synthesis of Christianity
with the ancient Egyptian religion.

Chapter 3

Acceleration and Free Fall

3.1 The Motion of Falling Objects
The motion of falling objects is the simplest and most common
example of motion with changing velocity. The early pioneers of
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a / Galileo dropped a cannonball
and a musketball simultaneously
from a tower, and observed that
they hit the ground at nearly the
same time. This contradicted
Aristotle’s long-accepted idea
that heavier objects fell faster.

physics had a correct intuition that the way things drop was a mes-
sage directly from Nature herself about how the universe worked.
Other examples seem less likely to have deep significance. A walking
person who speeds up is making a conscious choice. If one stretch of
a river flows more rapidly than another, it may be only because the
channel is narrower there, which is just an accident of the local ge-
ography. But there is something impressively consistent, universal,
and inexorable about the way things fall.

Stand up now and simultaneously drop a coin and a bit of paper
side by side. The paper takes much longer to hit the ground. That’s
why Aristotle wrote that heavy objects fell more rapidly. Europeans
believed him for two thousand years.

Now repeat the experiment, but make it into a race between the
coin and your shoe. My own shoe is about 50 times heavier than
the nickel I had handy, but it looks to me like they hit the ground at
exactly the same moment. So much for Aristotle! Galileo, who had
a flair for the theatrical, did the experiment by dropping a bullet
and a heavy cannonball from a tall tower. Aristotle’s observations
had been incomplete, his interpretation a vast oversimplification.

It is inconceivable that Galileo was the first person to observe a
discrepancy with Aristotle’s predictions. Galileo was the one who
changed the course of history because he was able to assemble the
observations into a coherent pattern, and also because he carried
out systematic quantitative (numerical) measurements rather than
just describing things qualitatively.

Why is it that some objects, like the coin and the shoe, have sim-
ilar motion, but others, like a feather or a bit of paper, are different?
Galileo speculated that in addition to the force that always pulls ob-
jects down, there was an upward force exerted by the air. Anyone
can speculate, but Galileo went beyond speculation and came up
with two clever experiments to probe the issue. First, he experi-
mented with objects falling in water, which probed the same issues
but made the motion slow enough that he could take time measure-
ments with a primitive pendulum clock. With this technique, he
established the following facts:

• All heavy, streamlined objects (for example a steel rod dropped
point-down) reach the bottom of the tank in about the same
amount of time, only slightly longer than the time they would
take to fall the same distance in air.

• Objects that are lighter or less streamlined take a longer time
to reach the bottom.

This supported his hypothesis about two contrary forces. He
imagined an idealized situation in which the falling object did not
have to push its way through any substance at all. Falling in air
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c / The v − t graph of a falling
object is a line.

would be more like this ideal case than falling in water, but even
a thin, sparse medium like air would be sufficient to cause obvious
effects on feathers and other light objects that were not streamlined.
Today, we have vacuum pumps that allow us to suck nearly all the
air out of a chamber, and if we drop a feather and a rock side by
side in a vacuum, the feather does not lag behind the rock at all.

How the speed of a falling object increases with time

Galileo’s second stroke of genius was to find a way to make quan-
titative measurements of how the speed of a falling object increased
as it went along. Again it was problematic to make sufficiently accu-
rate time measurements with primitive clocks, and again he found a
tricky way to slow things down while preserving the essential physi-
cal phenomena: he let a ball roll down a slope instead of dropping it
vertically. The steeper the incline, the more rapidly the ball would
gain speed. Without a modern video camera, Galileo had invented
a way to make a slow-motion version of falling.

b / Velocity increases more gradually on the gentle slope, but the
motion is otherwise the same as the motion of a falling object.

Although Galileo’s clocks were only good enough to do accurate
experiments at the smaller angles, he was confident after making
a systematic study at a variety of small angles that his basic con-
clusions were generally valid. Stated in modern language, what he
found was that the velocity-versus-time graph was a line. In the lan-
guage of algebra, we know that a line has an equation of the form
y = ax+ b, but our variables are v and t, so it would be v = at+ b.
(The constant b can be interpreted simply as the initial velocity of
the object, i.e., its velocity at the time when we started our clock,
which we conventionally write as vo.)

self-check A
An object is rolling down an incline. After it has been rolling for a short
time, it is found to travel 13 cm during a certain one-second interval.
During the second after that, if goes 16 cm. How many cm will it travel
in the second after that? . Answer, p. 273
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d / Galileo’s experiments show
that all falling objects have the
same motion if air resistance is
negligible.

e / 1. Aristotle said that heavier
objects fell faster than lighter
ones. 2. If two rocks are tied
together, that makes an extra-
heavy rock, which should fall
faster. 3. But Aristotle’s theory
would also predict that the light
rock would hold back the heavy
rock, resulting in a slower fall.

A contradiction in Aristotle’s reasoning

Galileo’s inclined-plane experiment disproved the long-accepted
claim by Aristotle that a falling object had a definite “natural falling
speed” proportional to its weight. Galileo had found that the speed
just kept on increasing, and weight was irrelevant as long as air
friction was negligible. Not only did Galileo prove experimentally
that Aristotle had been wrong, but he also pointed out a logical
contradiction in Aristotle’s own reasoning. Simplicio, the stupid
character, mouths the accepted Aristotelian wisdom:

SIMPLICIO: There can be no doubt but that a particular body
. . . has a fixed velocity which is determined by nature. . .

SALVIATI: If then we take two bodies whose natural speeds
are different, it is clear that, [according to Aristotle], on unit-
ing the two, the more rapid one will be partly held back by
the slower, and the slower will be somewhat hastened by the
swifter. Do you not agree with me in this opinion?

SIMPLICIO: You are unquestionably right.

SALVIATI: But if this is true, and if a large stone moves with a
speed of, say, eight [unspecified units] while a smaller moves
with a speed of four, then when they are united, the system
will move with a speed less than eight; but the two stones
when tied together make a stone larger than that which before
moved with a speed of eight. Hence the heavier body moves
with less speed than the lighter; an effect which is contrary to
your supposition. Thus you see how, from your assumption
that the heavier body moves more rapidly than the lighter one,
I infer that the heavier body moves more slowly.

What is gravity?

The physicist Richard Feynman liked to tell a story about how
when he was a little kid, he asked his father, “Why do things fall?”
As an adult, he praised his father for answering, “Nobody knows why
things fall. It’s a deep mystery, and the smartest people in the world
don’t know the basic reason for it.” Contrast that with the average
person’s off-the-cuff answer, “Oh, it’s because of gravity.” Feynman
liked his father’s answer, because his father realized that simply
giving a name to something didn’t mean that you understood it.
The radical thing about Galileo’s and Newton’s approach to science
was that they concentrated first on describing mathematically what
really did happen, rather than spending a lot of time on untestable
speculation such as Aristotle’s statement that “Things fall because
they are trying to reach their natural place in contact with the
earth.” That doesn’t mean that science can never answer the “why”
questions. Over the next month or two as you delve deeper into
physics, you will learn that there are more fundamental reasons why
all falling objects have v − t graphs with the same slope, regardless
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f / Example 1.

g / Example 2.

of their mass. Nevertheless, the methods of science always impose
limits on how deep our explanation can go.

3.2 Acceleration
Definition of acceleration for linear v − t graphs

Galileo’s experiment with dropping heavy and light objects from
a tower showed that all falling objects have the same motion, and his
inclined-plane experiments showed that the motion was described by
v = at+vo. The initial velocity vo depends on whether you drop the
object from rest or throw it down, but even if you throw it down,
you cannot change the slope, a, of the v − t graph.

Since these experiments show that all falling objects have lin-
ear v − t graphs with the same slope, the slope of such a graph is
apparently an important and useful quantity. We use the word accel-
eration, and the symbol a, for the slope of such a graph. In symbols,
a = ∆v/∆t. The acceleration can be interpreted as the amount of
speed gained in every second, and it has units of velocity divided by
time, i.e., “meters per second per second,” or m/s/s. Continuing to
treat units as if they were algebra symbols, we simplify “m/s/s” to
read “m/s2.” Acceleration can be a useful quantity for describing
other types of motion besides falling, and the word and the symbol
“a” can be used in a more general context. We reserve the more
specialized symbol “g” for the acceleration of falling objects, which
on the surface of our planet equals 9.8 m/s2. Often when doing
approximate calculations or merely illustrative numerical examples
it is good enough to use g = 10 m/s2, which is off by only 2%.

Finding final speed, given time example 1
. A despondent physics student jumps off a bridge, and falls for
three seconds before hitting the water. How fast is he going when
he hits the water?

. Approximating g as 10 m/s2, he will gain 10 m/s of speed each
second. After one second, his velocity is 10 m/s, after two sec-
onds it is 20 m/s, and on impact, after falling for three seconds,
he is moving at 30 m/s.

Extracting acceleration from a graph example 2
. The x − t and v − t graphs show the motion of a car starting
from a stop sign. What is the car’s acceleration?

. Acceleration is defined as the slope of the v-t graph. The graph
rises by 3 m/s during a time interval of 3 s, so the acceleration is
(3 m/s)/(3 s) = 1 m/s2.

Incorrect solution #1: The final velocity is 3 m/s, and acceleration
is velocity divided by time, so the acceleration is (3 m/s)/(10 s) =
0.3 m/s2.
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The solution is incorrect because you can’t find the slope of a
graph from one point. This person was just using the point at the
right end of the v-t graph to try to find the slope of the curve.

Incorrect solution #2: Velocity is distance divided by time so v =
(4.5 m)/(3 s) = 1.5 m/s. Acceleration is velocity divided by time,
so a = (1.5 m/s)/(3 s) = 0.5 m/s2.

The solution is incorrect because velocity is the slope of the tan-
gent line. In a case like this where the velocity is changing, you
can’t just pick two points on the x-t graph and use them to find the
velocity.

Converting g to different units example 3
. What is g in units of cm/s2?

. The answer is going to be how many cm/s of speed a falling
object gains in one second. If it gains 9.8 m/s in one second, then
it gains 980 cm/s in one second, so g = 980 cm/s2. Alternatively,
we can use the method of fractions that equal one:

9.8��m
s2 × 100 cm

1��m
=

980 cm
s2

. What is g in units of miles/hour2?

.

9.8 m
s2 × 1 mile

1600 m
×
(

3600 s
1 hour

)2

= 7.9× 104 mile/hour2

This large number can be interpreted as the speed, in miles per
hour, that you would gain by falling for one hour. Note that we had
to square the conversion factor of 3600 s/hour in order to cancel
out the units of seconds squared in the denominator.

. What is g in units of miles/hour/s?

.

9.8 m
s2 × 1 mile

1600 m
× 3600 s

1 hour
= 22 mile/hour/s

This is a figure that Americans will have an intuitive feel for. If
your car has a forward acceleration equal to the acceleration of a
falling object, then you will gain 22 miles per hour of speed every
second. However, using mixed time units of hours and seconds
like this is usually inconvenient for problem-solving. It would be
like using units of foot-inches for area instead of ft2 or in2.

The acceleration of gravity is different in different locations.

Everyone knows that gravity is weaker on the moon, but actu-
ally it is not even the same everywhere on Earth, as shown by the
sampling of numerical data in the following table.
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location latitude elevation (m) g (m/s2)
north pole 90 ◦N 0 9.8322
Reykjavik, Iceland 64 ◦N 0 9.8225
Fullerton, California 34 ◦N 0 9.7957
Guayaquil, Ecuador 2 ◦S 0 9.7806
Mt. Cotopaxi, Ecuador 1 ◦S 5896 9.7624
Mt. Everest 28 ◦N 8848 9.7643

The main variables that relate to the value of g on Earth are latitude
and elevation. Although you have not yet learned how g would
be calculated based on any deeper theory of gravity, it is not too
hard to guess why g depends on elevation. Gravity is an attraction
between things that have mass, and the attraction gets weaker with
increasing distance. As you ascend from the seaport of Guayaquil
to the nearby top of Mt. Cotopaxi, you are distancing yourself from
the mass of the planet. The dependence on latitude occurs because
we are measuring the acceleration of gravity relative to the earth’s
surface, but the earth’s rotation causes the earth’s surface to fall
out from under you. (We will discuss both gravity and rotation in
more detail later in the course.)

h / This false-color map shows
variations in the strength of the
earth’s gravity. Purple areas have
the strongest gravity, yellow the
weakest. The overall trend toward
weaker gravity at the equator and
stronger gravity at the poles has
been artificially removed to al-
low the weaker local variations to
show up. The map covers only
the oceans because of the tech-
nique used to make it: satellites
look for bulges and depressions
in the surface of the ocean. A
very slight bulge will occur over an
undersea mountain, for instance,
because the mountain’s gravita-
tional attraction pulls water to-
ward it. The US government orig-
inally began collecting data like
these for military use, to correct
for the deviations in the paths of
missiles. The data have recently
been released for scientific and
commercial use (e.g., searching
for sites for off-shore oil wells).

Much more spectacular differences in the strength of gravity can
be observed away from the Earth’s surface:
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location g (m/s2)
asteroid Vesta (surface) 0.3
Earth’s moon (surface) 1.6
Mars (surface) 3.7
Earth (surface) 9.8
Jupiter (cloud-tops) 26
Sun (visible surface) 270
typical neutron star (surface) 1012

black hole (center) infinite according to some theo-
ries, on the order of 1052 accord-
ing to others

A typical neutron star is not so different in size from a large asteroid,
but is orders of magnitude more massive, so the mass of a body
definitely correlates with the g it creates. On the other hand, a
neutron star has about the same mass as our Sun, so why is its g
billions of times greater? If you had the misfortune of being on the
surface of a neutron star, you’d be within a few thousand miles of all
its mass, whereas on the surface of the Sun, you’d still be millions
of miles from most of its mass.

Discussion Questions

A What is wrong with the following definitions of g?

(1) “g is gravity.”

(2) “g is the speed of a falling object.”

(3) “g is how hard gravity pulls on things.”

B When advertisers specify how much acceleration a car is capable
of, they do not give an acceleration as defined in physics. Instead, they
usually specify how many seconds are required for the car to go from rest
to 60 miles/hour. Suppose we use the notation “a” for the acceleration as
defined in physics, and “acar ad” for the quantity used in advertisements for
cars. In the US’s non-metric system of units, what would be the units of
a and acar ad? How would the use and interpretation of large and small,
positive and negative values be different for a as opposed to acar ad?

C Two people stand on the edge of a cliff. As they lean over the edge,
one person throws a rock down, while the other throws one straight up
with an exactly opposite initial velocity. Compare the speeds of the rocks
on impact at the bottom of the cliff.

3.3 Positive and Negative Acceleration
Gravity always pulls down, but that does not mean it always speeds
things up. If you throw a ball straight up, gravity will first slow
it down to v = 0 and then begin increasing its speed. When I
took physics in high school, I got the impression that positive signs
of acceleration indicated speeding up, while negative accelerations
represented slowing down, i.e., deceleration. Such a definition would
be inconvenient, however, because we would then have to say that
the same downward tug of gravity could produce either a positive
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i / The ball’s acceleration stays
the same — on the way up, at the
top, and on the way back down.
It’s always negative.

or a negative acceleration. As we will see in the following example,
such a definition also would not be the same as the slope of the v− t
graph

Let’s study the example of the rising and falling ball. In the ex-
ample of the person falling from a bridge, I assumed positive velocity
values without calling attention to it, which meant I was assuming
a coordinate system whose x axis pointed down. In this example,
where the ball is reversing direction, it is not possible to avoid neg-
ative velocities by a tricky choice of axis, so let’s make the more
natural choice of an axis pointing up. The ball’s velocity will ini-
tially be a positive number, because it is heading up, in the same
direction as the x axis, but on the way back down, it will be a neg-
ative number. As shown in the figure, the v − t graph does not do
anything special at the top of the ball’s flight, where v equals 0. Its
slope is always negative. In the left half of the graph, there is a
negative slope because the positive velocity is getting closer to zero.
On the right side, the negative slope is due to a negative velocity
that is getting farther from zero, so we say that the ball is speeding
up, but its velocity is decreasing!

To summarize, what makes the most sense is to stick with the
original definition of acceleration as the slope of the v − t graph,
∆v/∆t. By this definition, it just isn’t necessarily true that things
speeding up have positive acceleration while things slowing down
have negative acceleration. The word “deceleration” is not used
much by physicists, and the word “acceleration” is used unblush-
ingly to refer to slowing down as well as speeding up: “There was a
red light, and we accelerated to a stop.”

Numerical calculation of a negative acceleration example 4
. In figure i, what happens if you calculate the acceleration be-
tween t = 1.0 and 1.5 s?

. Reading from the graph, it looks like the velocity is about−1 m/s
at t = 1.0 s, and around −6 m/s at t = 1.5 s. The acceleration,
figured between these two points, is

a =
∆v
∆t

=
(−6 m/s)− (−1 m/s)

(1.5 s)− (1.0 s)
= −10 m/s2 .

Even though the ball is speeding up, it has a negative accelera-
tion.

Another way of convincing you that this way of handling the plus
and minus signs makes sense is to think of a device that measures
acceleration. After all, physics is supposed to use operational defini-
tions, ones that relate to the results you get with actual measuring
devices. Consider an air freshener hanging from the rear-view mirror
of your car. When you speed up, the air freshener swings backward.
Suppose we define this as a positive reading. When you slow down,
the air freshener swings forward, so we’ll call this a negative reading
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on our accelerometer. But what if you put the car in reverse and
start speeding up backwards? Even though you’re speeding up, the
accelerometer responds in the same way as it did when you were
going forward and slowing down. There are four possible cases:

motion of car accelerometer
swings

slope of
v-t graph

direction
of force
acting on
car

forward, speeding up backward + forward
forward, slowing down forward − backward
backward, speeding up forward − backward
backward, slowing down backward + forward

Note the consistency of the three right-hand columns — nature is
trying to tell us that this is the right system of classification, not
the left-hand column.

Because the positive and negative signs of acceleration depend
on the choice of a coordinate system, the acceleration of an object
under the influence of gravity can be either positive or negative.
Rather than having to write things like “g = 9.8 m/s2 or −9.8 m/s2”
every time we want to discuss g’s numerical value, we simply define
g as the absolute value of the acceleration of objects moving under
the influence of gravity. We consistently let g = 9.8 m/s2, but we
may have either a = g or a = −g, depending on our choice of a
coordinate system.

Acceleration with a change in direction of motion example 5
. A person kicks a ball, which rolls up a sloping street, comes to
a halt, and rolls back down again. The ball has constant accel-
eration. The ball is initially moving at a velocity of 4.0 m/s, and
after 10.0 s it has returned to where it started. At the end, it has
sped back up to the same speed it had initially, but in the opposite
direction. What was its acceleration?

. By giving a positive number for the initial velocity, the statement
of the question implies a coordinate axis that points up the slope
of the hill. The “same” speed in the opposite direction should
therefore be represented by a negative number, -4.0 m/s. The
acceleration is

a = ∆v/∆t
= (vf − vo)/10.0 s
= [(−4.0 m/s)− (4.0 m/s)]/10.0s

= −0.80 m/s2 .

The acceleration was no different during the upward part of the
roll than on the downward part of the roll.

Incorrect solution: Acceleration is ∆v/∆t, and at the end it’s not
moving any faster or slower than when it started, so ∆v=0 and
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Discussion question C.

a = 0.

The velocity does change, from a positive number to a negative
number.

Discussion question B.

Discussion Questions

A A child repeatedly jumps up and down on a trampoline. Discuss the
sign and magnitude of his acceleration, including both the time when he is
in the air and the time when his feet are in contact with the trampoline.

B The figure shows a refugee from a Picasso painting blowing on a
rolling water bottle. In some cases the person’s blowing is speeding the
bottle up, but in others it is slowing it down. The arrow inside the bottle
shows which direction it is going, and a coordinate system is shown at the
bottom of each figure. In each case, figure out the plus or minus signs of
the velocity and acceleration. It may be helpful to draw a v − t graph in
each case.
C Sally is on an amusement park ride which begins with her chair being
hoisted straight up a tower at a constant speed of 60 miles/hour. Despite
stern warnings from her father that he’ll take her home the next time she
misbehaves, she decides that as a scientific experiment she really needs
to release her corndog over the side as she’s on the way up. She does
not throw it. She simply sticks it out of the car, lets it go, and watches it
against the background of the sky, with no trees or buildings as reference
points. What does the corndog’s motion look like as observed by Sally?
Does its speed ever appear to her to be zero? What acceleration does
she observe it to have: is it ever positive? negative? zero? What would
her enraged father answer if asked for a similar description of its motion
as it appears to him, standing on the ground?

D Can an object maintain a constant acceleration, but meanwhile
reverse the direction of its velocity?

E Can an object have a velocity that is positive and increasing at the
same time that its acceleration is decreasing?
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k / Example 6.

3.4 Varying Acceleration
So far we have only been discussing examples of motion for which
the v − t graph is linear. If we wish to generalize our definition to
v-t graphs that are more complex curves, the best way to proceed
is similar to how we defined velocity for curved x− t graphs:

definition of acceleration
The acceleration of an object at any instant is the slope of
the tangent line passing through its v-versus-t graph at the
relevant point.

A skydiver example 6
. The graphs in figure k show the results of a fairly realistic com-
puter simulation of the motion of a skydiver, including the effects
of air friction. The x axis has been chosen pointing down, so x
is increasing as she falls. Find (a) the skydiver’s acceleration at
t = 3.0 s, and also (b) at t = 7.0 s.

. The solution is shown in figure l. I’ve added tangent lines at the
two points in question.

(a) To find the slope of the tangent line, I pick two points on the
line (not necessarily on the actual curve): (3.0 s, 28m/s) and
(5.0 s, 42 m/s). The slope of the tangent line is (42 m/s−28 m/s)/(5.0 s−
3.0 s) = 7.0 m/s2.

(b) Two points on this tangent line are (7.0 s, 47 m/s) and (9.0 s, 52 m/s).
The slope of the tangent line is (52 m/s−47 m/s)/(9.0 s−7.0 s) =
2.5 m/s2.

Physically, what’s happening is that at t = 3.0 s, the skydiver is
not yet going very fast, so air friction is not yet very strong. She
therefore has an acceleration almost as great as g. At t = 7.0 s,
she is moving almost twice as fast (about 100 miles per hour), and
air friction is extremely strong, resulting in a significant departure
from the idealized case of no air friction.

In example 6, the x−t graph was not even used in the solution of
the problem, since the definition of acceleration refers to the slope
of the v − t graph. It is possible, however, to interpret an x − t
graph to find out something about the acceleration. An object with
zero acceleration, i.e., constant velocity, has an x− t graph that is a
straight line. A straight line has no curvature. A change in velocity
requires a change in the slope of the x− t graph, which means that
it is a curve rather than a line. Thus acceleration relates to the
curvature of the x− t graph. Figure m shows some examples.
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l / The solution to example 6.

In example 6, the x − t graph was more strongly curved at the
beginning, and became nearly straight at the end. If the x− t graph
is nearly straight, then its slope, the velocity, is nearly constant, and
the acceleration is therefore small. We can thus interpret the accel-
eration as representing the curvature of the x − t graph, as shown
in figure m. If the “cup” of the curve points up, the acceleration is
positive, and if it points down, the acceleration is negative.

m / Acceleration relates to the curvature of the x − t graph.
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o / How position, velocity, and
acceleration are related.

Since the relationship between a and v is analogous to the rela-
tionship between v and x, we can also make graphs of acceleration
as a function of time, as shown in figure n.

n / Examples of graphs of x , v , and a versus t . 1. A object in free
fall, with no friction. 2. A continuation of example 6, the skydiver.

. Solved problem: Drawing a v − t graph. page 117, problem 14

. Solved problem: Drawing v − t and a− t graphs. page 118, problem
20

Figure o summarizes the relationships among the three types of
graphs.

Discussion Questions

A Describe in words how the changes in the a − t graph in figure n/2
relate to the behavior of the v − t graph.
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B Explain how each set of graphs contains inconsistencies, and fix
them.

C In each case, pick a coordinate system and draw x − t , v − t , and
a− t graphs. Picking a coordinate system means picking where you want
x = 0 to be, and also picking a direction for the positive x axis.

(1) An ocean liner is cruising in a straight line at constant speed.

(2) You drop a ball. Draw two different sets of graphs (a total of 6), with
one set’s positive x axis pointing in the opposite direction compared to the
other’s.

(3) You’re driving down the street looking for a house you’ve never been
to before. You realize you’ve passed the address, so you slow down, put
the car in reverse, back up, and stop in front of the house.

3.5 The Area Under the Velocity-Time Graph
A natural question to ask about falling objects is how fast they fall,
but Galileo showed that the question has no answer. The physical
law that he discovered connects a cause (the attraction of the planet
Earth’s mass) to an effect, but the effect is predicted in terms of an
acceleration rather than a velocity. In fact, no physical law predicts
a definite velocity as a result of a specific phenomenon, because
velocity cannot be measured in absolute terms, and only changes in
velocity relate directly to physical phenomena.

The unfortunate thing about this situation is that the definitions
of velocity and acceleration are stated in terms of the tangent-line
technique, which lets you go from x to v to a, but not the other
way around. Without a technique to go backwards from a to v to x,
we cannot say anything quantitative, for instance, about the x − t
graph of a falling object. Such a technique does exist, and I used it
to make the x− t graphs in all the examples above.
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p / The area under the v − t
graph gives ∆x .

First let’s concentrate on how to get x information out of a v− t
graph. In example p/1, an object moves at a speed of 20 m/s for
a period of 4.0 s. The distance covered is ∆x = v∆t = (20 m/s) ×
(4.0 s) = 80 m. Notice that the quantities being multiplied are the
width and the height of the shaded rectangle — or, strictly speaking,
the time represented by its width and the velocity represented by
its height. The distance of ∆x = 80 m thus corresponds to the area
of the shaded part of the graph.

The next step in sophistication is an example like p/2, where the
object moves at a constant speed of 10 m/s for two seconds, then
for two seconds at a different constant speed of 20 m/s. The shaded
region can be split into a small rectangle on the left, with an area
representing ∆x = 20 m, and a taller one on the right, corresponding
to another 40 m of motion. The total distance is thus 60 m, which
corresponds to the total area under the graph.

An example like p/3 is now just a trivial generalization; there
is simply a large number of skinny rectangular areas to add up.
But notice that graph p/3 is quite a good approximation to the
smooth curve p/4. Even though we have no formula for the area of
a funny shape like p/4, we can approximate its area by dividing it up
into smaller areas like rectangles, whose area is easier to calculate.
If someone hands you a graph like p/4 and asks you to find the
area under it, the simplest approach is just to count up the little
rectangles on the underlying graph paper, making rough estimates
of fractional rectangles as you go along.

That’s what I’ve done in figure q. Each rectangle on the graph
paper is 1.0 s wide and 2 m/s tall, so it represents 2 m. Adding up
all the numbers gives ∆x = 41 m. If you needed better accuracy,
you could use graph paper with smaller rectangles.

It’s important to realize that this technique gives you ∆x, not
x. The v − t graph has no information about where the object was
when it started.

The following are important points to keep in mind when apply-
ing this technique:

• If the range of v values on your graph does not extend down
to zero, then you will get the wrong answer unless you com-
pensate by adding in the area that is not shown.

• As in the example, one rectangle on the graph paper does not
necessarily correspond to one meter of distance.

• Negative velocity values represent motion in the opposite di-
rection, so area under the t axis should be subtracted, i.e.,
counted as “negative area.”
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q / An example using estimation
of fractions of a rectangle.

• Since the result is a ∆x value, it only tells you xafter−xbefore,
which may be less than the actual distance traveled. For in-
stance, the object could come back to its original position at
the end, which would correspond to ∆x=0, even though it had
actually moved a nonzero distance.

Finally, note that one can find ∆v from an a − t graph using
an entirely analogous method. Each rectangle on the a − t graph
represents a certain amount of velocity change.

Discussion Question

A Roughly what would a pendulum’s v− t graph look like? What would
happen when you applied the area-under-the-curve technique to find the
pendulum’s ∆x for a time period covering many swings?

3.6 Algebraic Results for Constant
Acceleration

Although the area-under-the-curve technique can be applied to any
graph, no matter how complicated, it may be laborious to carry out,
and if fractions of rectangles must be estimated the result will only
be approximate. In the special case of motion with constant accel-
eration, it is possible to find a convenient shortcut which produces
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r / The shaded area tells us
how far an object moves while
accelerating at a constant rate.

exact results. When the acceleration is constant, the v − t graph
is a straight line, as shown in the figure. The area under the curve
can be divided into a triangle plus a rectangle, both of whose areas
can be calculated exactly: A = bh for a rectangle and A = bh/2
for a triangle. The height of the rectangle is the initial velocity, vo,
and the height of the triangle is the change in velocity from begin-
ning to end, ∆v. The object’s ∆x is therefore given by the equation
∆x = vo∆t + ∆v∆t/2. This can be simplified a little by using the
definition of acceleration, a = ∆v/∆t, to eliminate ∆v, giving

∆x = vo∆t+
1

2
a∆t2 . [motion with

constant acceleration]

Since this is a second-order polynomial in ∆t, the graph of ∆x versus
∆t is a parabola, and the same is true of a graph of x versus t —
the two graphs differ only by shifting along the two axes. Although
I have derived the equation using a figure that shows a positive vo,
positive a, and so on, it still turns out to be true regardless of what
plus and minus signs are involved.

Another useful equation can be derived if one wants to relate
the change in velocity to the distance traveled. This is useful, for
instance, for finding the distance needed by a car to come to a stop.
For simplicity, we start by deriving the equation for the special case
of vo = 0, in which the final velocity vf is a synonym for ∆v. Since
velocity and distance are the variables of interest, not time, we take
the equation ∆x = 1

2a∆t2 and use ∆t = ∆v/a to eliminate ∆t. This
gives ∆x = (∆v)2/2a, which can be rewritten as

v2
f = 2a∆x . [motion with constant acceleration, vo = 0]

For the more general case where vo 6= 0, we skip the tedious algebra
leading to the more general equation,

v2
f = v2

o + 2a∆x . [motion with constant acceleration]
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To help get this all organized in your head, first let’s categorize
the variables as follows:

Variables that change during motion with constant acceleration:

x ,v, t

Variable that doesn’t change:

a

If you know one of the changing variables and want to find another,
there is always an equation that relates those two:

The symmetry among the three variables is imperfect only be-
cause the equation relating x and t includes the initial velocity.

There are two main difficulties encountered by students in ap-
plying these equations:

• The equations apply only to motion with constant accelera-
tion. You can’t apply them if the acceleration is changing.

• Students are often unsure of which equation to use, or may
cause themselves unnecessary work by taking the longer path
around the triangle in the chart above. Organize your thoughts
by listing the variables you are given, the ones you want to
find, and the ones you aren’t given and don’t care about.

Saving an old lady example 7
. You are trying to pull an old lady out of the way of an oncoming
truck. You are able to give her an acceleration of 20 m/s2. Start-
ing from rest, how much time is required in order to move her 2
m?

. First we organize our thoughts:

Variables given: ∆x , a, vo

Variables desired: ∆t

Irrelevant variables: vf

Consulting the triangular chart above, the equation we need is
clearly ∆x = vo∆t+ 1

2a∆t2, since it has the four variables of interest
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s / On October 4, 2004, the
privately funded SpaceShipOne
won the ten-million-dollar Ansari
X Prize by reaching an altitude
of 100 km twice in the space of
14 days. [Courtesy of Scaled
Composites LLC.]

and omits the irrelevant one. Eliminating the vo term and solving
for ∆t gives ∆t =

√
2∆x/a = 0.4 s.

. Solved problem: A stupid celebration page 117, problem 15

. Solved problem: Dropping a rock on Mars page 117, problem 16

. Solved problem: The Dodge Viper page 118, problem 18

. Solved problem: Half-way sped up page 118, problem 22

Discussion Questions

A In chapter 1, I gave examples of correct and incorrect reasoning
about proportionality, using questions about the scaling of area and vol-
ume. Try to translate the incorrect modes of reasoning shown there into
mistakes about the following question: If the acceleration of gravity on
Mars is 1/3 that on Earth, how many times longer does it take for a rock
to drop the same distance on Mars?

B Check that the units make sense in the three equations derived in
this section.

3.7 ? Biological Effects of Weightlessness
The usefulness of outer space was brought home to North Ameri-

cans in 1998 by the unexpected failure of the communications satel-
lite that had been handling almost all of the continent’s cellular
phone traffic. Compared to the massive economic and scientific pay-
offs of satellites and space probes, human space travel has little to
boast about after four decades. Sending people into orbit has just
been too expensive to be an effective scientific or commercial ac-
tivity. The downsized and over-budget International Space Station
has produced virtually no scientific results, and the space shuttle
program now has a record of two catastrophic failures out of 113
missions.

Within our lifetimes, we are probably only likely to see one eco-
nomically viable reason for sending humans into space: tourism!
No fewer than three private companies are now willing to take your
money for a reservation on a two-to-four minute trip into space,
although none of them has a firm date on which to begin service.
Within a decade, a space cruise may be the new status symbol
among those sufficiently rich and brave.

Space sickness

Well, rich, brave, and possessed of an iron stomach. Travel
agents will probably not emphasize the certainty of constant space-
sickness. For us animals evolved to function in g = 9.8 m/s2, living
in g = 0 is extremely unpleasant. The early space program focused
obsessively on keeping the astronaut-trainees in perfect physical
shape, but it soon became clear that a body like a Greek demigod’s
was no defense against that horrible feeling that your stomach was
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t / U.S. and Russian astro-
nauts aboard the International
Space Station, October 2000.

u / The International Space
Station, September 2000. The
space station does not rotate to
provide simulated gravity. The
completed station will be much
bigger.

falling out from under you and you were never going to catch up.
Our inner ear, which normally tells us which way is down, tortures
us when down is nowhere to be found. There is contradictory in-
formation about whether anyone ever gets over it; the “right stuff”
culture creates a strong incentive for astronauts to deny that they
are sick.

Effects of long space missions
Worse than nausea are the health-threatening effects of pro-

longed weightlessness. The Russians are the specialists in long-term
missions, in which cosmonauts suffer harm to their blood, muscles,
and, most importantly, their bones.

The effects on the muscles and skeleton appear to be similar to
those experienced by old people and people confined to bed for a
long time. Everyone knows that our muscles get stronger or weaker
depending on the amount of exercise we get, but the bones are like-
wise adaptable. Normally old bone mass is continually being broken
down and replaced with new material, but the balance between its
loss and replacement is upset when people do not get enough weight-
bearing exercise. The main effect is on the bones of the lower body.
More research is required to find out whether astronauts’ loss of bone
mass is due to faster breaking down of bone, slower replacement, or
both. It is also not known whether the effect can be suppressed via
diet or drugs.

The other set of harmful physiological effects appears to derive
from the redistribution of fluids. Normally, the veins and arter-
ies of the legs are tightly constricted to keep gravity from making
blood collect there. It is uncomfortable for adults to stand on their
heads for very long, because the head’s blood vessels are not able to
constrict as effectively. Weightless astronauts’ blood tends to be ex-
pelled by the constricted blood vessels of the lower body, and pools
around their hearts, in their thoraxes, and in their heads. The only
immediate result is an uncomfortable feeling of bloatedness in the
upper body, but in the long term, a harmful chain of events is set in
motion. The body’s attempts to maintain the correct blood volume
are most sensitive to the level of fluid in the head. Since astronauts
have extra fluid in their heads, the body thinks that the over-all
blood volume has become too great. It responds by decreasing blood
volume below normal levels. This increases the concentration of red
blood cells, so the body then decides that the blood has become too
thick, and reduces the number of blood cells. In missions lasting up
to a year or so, this is not as harmful as the musculo-skeletal effects,
but it is not known whether longer period in space would bring the
red blood cell count down to harmful levels.
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Reproduction in space

For those enthralled by the romance of actual human coloniza-
tion of space, human reproduction in weightlessness becomes an
issue. One of NASA’s public relations concerns about the space
shuttle program was to discourage speculation about space sex, for
fear of a potential taxpayers’ backlash against the space program as
an expensive form of exotic pleasure.

Scientific work has been concentrated on studying plant and an-
imal reproduction in space. Green plants, fungi, insects, fish, and
amphibians have all gone through at least one generation in zero-
gravity experiments without any serious problems. In many cases,
animal embryos conceived in orbit begin by developing abnormally,
but later in development they seem to correct themselves. However,
chicken embryos fertilized on earth less than 24 hours before going
into orbit have failed to survive, and rats that were born and began
development in zero gravity failed to develop the ability to orient
themselves properly.

Simulated gravity

If humans are ever to live and work in space for more than a
year or so, the only solution is probably to build spinning space sta-
tions to provide the illusion of weight, as discussed in section 9.2.
Normal gravity could be simulated, but tourists would probably en-
joy g = 2 m/s2 or 5 m/s2. Space enthusiasts have proposed entire
orbiting cities built on the rotating cylinder plan. Although science
fiction has focused on human colonization of relatively earthlike bod-
ies such as our moon, Mars, and Jupiter’s icy moon Europa, there
would probably be no practical way to build large spinning struc-
tures on their surfaces. If the biological effects of their 2 − 3 m/s2

gravitational accelerations are as harmful as the effect of g = 0, then
we may be left with the surprising result that interplanetary space
is more hospitable to our species than the moons and planets.

Optional Topic: More on Apparent Weightlessness
Astronauts in orbit are not really weightless; they are only a few hundred
miles up, so they are still affected strongly by the Earth’s gravity. Section
10.3 of this book discusses why they experience apparent weightless-
ness.

Optional Topic: More on Simulated Gravity
For more information on simulating gravity by spinning a spacecraft, see
section 9.2 of this book.

3.8
∫

Applications of Calculus
In the Applications of Calculus section at the end of the previous
chapter, I discussed how the slope-of-the-tangent-line idea related
to the calculus concept of a derivative, and the branch of calculus
known as differential calculus. The other main branch of calculus,
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integral calculus, has to do with the area-under-the-curve concept
discussed in section 3.5 of this chapter. Again there is a concept,
a notation, and a bag of tricks for doing things symbolically rather
than graphically. In calculus, the area under the v−t graph between
t = t1 and t = t2 is notated like this:

area under curve = ∆x =

∫ t2

t1

vdt .

The expression on the right is called an integral, and the s-shaped
symbol, the integral sign, is read as “integral of . . . ”

Integral calculus and differential calculus are closely related. For
instance, if you take the derivative of the function x(t), you get
the function v(t), and if you integrate the function v(t), you get
x(t) back again. In other words, integration and differentiation are
inverse operations. This is known as the fundamental theorem of
calculus.

On an unrelated topic, there is a special notation for taking the
derivative of a function twice. The acceleration, for instance, is the
second (i.e., double) derivative of the position, because differentiat-
ing x once gives v, and then differentiating v gives a. This is written
as

a =
d2x

dt2
.

The seemingly inconsistent placement of the twos on the top and
bottom confuses all beginning calculus students. The motivation
for this funny notation is that acceleration has units of m/s2, and
the notation correctly suggests that: the top looks like it has units of
meters, the bottom seconds2. The notation is not meant, however,
to suggest that t is really squared.

Section 3.8
∫
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Summary
Selected Vocabulary
gravity . . . . . . A general term for the phenomenon of attrac-

tion between things having mass. The attrac-
tion between our planet and a human-sized ob-
ject causes the object to fall.

acceleration . . . The rate of change of velocity; the slope of the
tangent line on a v − t graph.

Notation
vo . . . . . . . . . initial velocity
vf . . . . . . . . . final velocity
a . . . . . . . . . . acceleration
g . . . . . . . . . . the acceleration of objects in free fall; the

strength of the local gravitational field

Summary

Galileo showed that when air resistance is negligible all falling
bodies have the same motion regardless of mass. Moreover, their
v− t graphs are straight lines. We therefore define a quantity called
acceleration as the slope, ∆v/∆t, of an object’s v−t graph. In cases
other than free fall, the v−t graph may be curved, in which case the
definition is generalized as the slope of a tangent line on the v − t
graph. The acceleration of objects in free fall varies slightly across
the surface of the earth, and greatly on other planets.

Positive and negative signs of acceleration are defined according
to whether the v − t graph slopes up or down. This definition has
the advantage that a force in a given direction always produces the
same sign of acceleration.

The area under the v − t graph gives ∆x, and analogously the
area under the a− t graph gives ∆v.

For motion with constant acceleration, the following three equa-
tions hold:

∆x = vo∆t+
1

2
a∆t2

v2
f = v2

o + 2a∆x

a =
∆v

∆t

They are not valid if the acceleration is changing.
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Problem 3.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 The graph represents the velocity of a bee along a straight
line. At t = 0, the bee is at the hive. (a) When is the bee farthest
from the hive? (b) How far is the bee at its farthest point from the
hive? (c) At t = 13 s, how far is the bee from the hive? [Hint: Try
problem 19 first.]

√

2 A rock is dropped into a pond. Draw plots of its position
versus time, velocity versus time, and acceleration versus time. In-
clude its whole motion, starting from the moment it is dropped, and
continuing while it falls through the air, passes through the water,
and ends up at rest on the bottom of the pond. Do your work on a
photocopy or a printout of page 121.

3 In an 18th-century naval battle, a cannon ball is shot horizon-
tally, passes through the side of an enemy ship’s hull, flies across the
galley, and lodges in a bulkhead. Draw plots of its horizontal posi-
tion, velocity, and acceleration as functions of time, starting while it
is inside the cannon and has not yet been fired, and ending when it
comes to rest. There is not any significant amount of friction from
the air. Although the ball may rise and fall, you are only concerned
with its horizontal motion, as seen from above. Do your work on a
photocopy or a printout of page 121.

4 Draw graphs of position, velocity, and acceleration as functions
of time for a person bunjee jumping. (In bunjee jumping, a person
has a stretchy elastic cord tied to his/her ankles, and jumps off of a
high platform. At the bottom of the fall, the cord brings the person
up short. Presumably the person bounces up a little.) Do your work
on a photocopy or a printout of page 121.
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Problem 5.

5 A ball rolls down the ramp shown in the figure, consisting of a
curved knee, a straight slope, and a curved bottom. For each part of
the ramp, tell whether the ball’s velocity is increasing, decreasing,
or constant, and also whether the ball’s acceleration is increasing,
decreasing, or constant. Explain your answers. Assume there is no
air friction or rolling resistance. Hint: Try problem 20 first. [Based
on a problem by Hewitt.]

6 A toy car is released on one side of a piece of track that is bent
into an upright U shape. The car goes back and forth. When the
car reaches the limit of its motion on one side, its velocity is zero.
Is its acceleration also zero? Explain using a v− t graph. [Based on
a problem by Serway and Faughn.]

7 What is the acceleration of a car that moves at a steady
velocity of 100 km/h for 100 seconds? Explain your answer. [Based
on a problem by Hewitt.]

8 A physics homework question asks, “If you start from rest and
accelerate at 1.54 m/s2 for 3.29 s, how far do you travel by the end
of that time?” A student answers as follows:

1.54× 3.29 = 5.07 m

His Aunt Wanda is good with numbers, but has never taken physics.
She doesn’t know the formula for the distance traveled under con-
stant acceleration over a given amount of time, but she tells her
nephew his answer cannot be right. How does she know?

9 You are looking into a deep well. It is dark, and you cannot
see the bottom. You want to find out how deep it is, so you drop
a rock in, and you hear a splash 3.0 seconds later. How deep is the
well?

√

10 You take a trip in your spaceship to another star. Setting off,
you increase your speed at a constant acceleration. Once you get
half-way there, you start decelerating, at the same rate, so that by
the time you get there, you have slowed down to zero speed. You see
the tourist attractions, and then head home by the same method.
(a) Find a formula for the time, T , required for the round trip, in
terms of d, the distance from our sun to the star, and a, the magni-
tude of the acceleration. Note that the acceleration is not constant
over the whole trip, but the trip can be broken up into constant-
acceleration parts.
(b) The nearest star to the Earth (other than our own sun) is Prox-
ima Centauri, at a distance of d = 4× 1016 m. Suppose you use an
acceleration of a = 10 m/s2, just enough to compensate for the lack
of true gravity and make you feel comfortable. How long does the
round trip take, in years?
(c) Using the same numbers for d and a, find your maximum speed.
Compare this to the speed of light, which is 3.0× 108 m/s. (Later
in this course, you will learn that there are some new things going
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Problem 14.

on in physics when one gets close to the speed of light, and that it
is impossible to exceed the speed of light. For now, though, just use
the simpler ideas you’ve learned so far.)

√
?

11 You climb half-way up a tree, and drop a rock. Then you
climb to the top, and drop another rock. How many times greater
is the velocity of the second rock on impact? Explain. (The answer
is not two times greater.)

12 Alice drops a rock off a cliff. Bubba shoots a gun straight
down from the edge of the same cliff. Compare the accelerations of
the rock and the bullet while they are in the air on the way down.
[Based on a problem by Serway and Faughn.]

13 A person is parachute jumping. During the time between
when she leaps out of the plane and when she opens her chute, her
altitude is given by an equation of the form

y = b− c
(
t+ ke−t/k

)
,

where e is the base of natural logarithms, and b, c, and k are con-
stants. Because of air resistance, her velocity does not increase at a
steady rate as it would for an object falling in vacuum.
(a) What units would b, c, and k have to have for the equation to
make sense?
(b) Find the person’s velocity, v, as a function of time. [You will
need to use the chain rule, and the fact that d(ex)/dx = ex.]

√

(c) Use your answer from part (b) to get an interpretation of the
constant c. [Hint: e−x approaches zero for large values of x.]
(d) Find the person’s acceleration, a, as a function of time.

√

(e) Use your answer from part (b) to show that if she waits long
enough to open her chute, her acceleration will become very small.∫
14 The top part of the figure shows the position-versus-time
graph for an object moving in one dimension. On the bottom part
of the figure, sketch the corresponding v-versus-t graph.

. Solution, p. 276

15 On New Year’s Eve, a stupid person fires a pistol straight up.
The bullet leaves the gun at a speed of 100 m/s. How long does it
take before the bullet hits the ground? . Solution, p. 277

16 If the acceleration of gravity on Mars is 1/3 that on Earth,
how many times longer does it take for a rock to drop the same
distance on Mars? Ignore air resistance. . Solution, p. 277

17 A honeybee’s position as a function of time is given by
x = 10t − t3, where t is in seconds and x in meters. What is its
acceleration at t = 3.0 s? . Solution, p. 277

∫
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Problem 19.

Problem 20.

Problem 23.

18 In July 1999, Popular Mechanics carried out tests to find
which car sold by a major auto maker could cover a quarter mile
(402 meters) in the shortest time, starting from rest. Because the
distance is so short, this type of test is designed mainly to favor the
car with the greatest acceleration, not the greatest maximum speed
(which is irrelevant to the average person). The winner was the
Dodge Viper, with a time of 12.08 s. The car’s top (and presumably
final) speed was 118.51 miles per hour (52.98 m/s). (a) If a car,
starting from rest and moving with constant acceleration, covers
a quarter mile in this time interval, what is its acceleration? (b)
What would be the final speed of a car that covered a quarter mile
with the constant acceleration you found in part a? (c) Based on
the discrepancy between your answer in part b and the actual final
speed of the Viper, what do you conclude about how its acceleration
changed over time? . Solution, p. 277

19 The graph represents the motion of a ball that rolls up a hill
and then back down. When does the ball return to the location it
had at t = 0? . Solution, p. 277

20 (a) The ball is released at the top of the ramp shown in the
figure. Friction is negligible. Use physical reasoning to draw v − t
and a− t graphs. Assume that the ball doesn’t bounce at the point
where the ramp changes slope. (b) Do the same for the case where
the ball is rolled up the slope from the right side, but doesn’t quite
have enough speed to make it over the top. . Solution, p. 277

21 You throw a rubber ball up, and it falls and bounces sev-
eral times. Draw graphs of position, velocity, and acceleration as
functions of time. . Solution, p. 278

22 Starting from rest, a ball rolls down a ramp, traveling a
distance L and picking up a final speed v. How much of the distance
did the ball have to cover before achieving a speed of v/2? [Based
on a problem by Arnold Arons.] . Solution, p. 279

23 The graph shows the acceleration of a chipmunk in a TV
cartoon. It consists of two circular arcs and two line segments.
At t = 0.00 s, the chipmunk’s velocity is −3.10 m/s. What is its
velocity at t = 10.00 s?

24 Find the error in the following calculation. A student wants
to find the distance traveled by a car that accelerates from rest for
5.0 s with an acceleration of 2.0 m/s2. First he solves a = ∆v/∆t for
∆v = 10 m/s. Then he multiplies to find (10 m/s)(5.0 s) = 50 m.
Do not just recalculate the result by a different method; if that was
all you did, you’d have no way of knowing which calculation was
correct, yours or his.
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Problem 27.

25 Acceleration could be defined either as ∆v/∆t or as the slope
of the tangent line on the v − t graph. Is either one superior as a
definition, or are they equivalent? If you say one is better, give an
example of a situation where it makes a difference which one you
use.

26 If an object starts accelerating from rest, we have v2 =
2a∆x for its speed after it has traveled a distance ∆x. Explain in
words why it makes sense that the equation has velocity squared, but
distance only to the first power. Don’t recapitulate the derivation
in the book, or give a justification based on units. The point is
to explain what this feature of the equation tells us about the way
speed increases as more distance is covered.

27 The figure shows a practical, simple experiment for determin-
ing g to high precision. Two steel balls are suspended from electro-
magnets, and are released simultaneously when the electric current
is shut off. They fall through unequal heights ∆x1 and ∆x2. A
computer records the sounds through a microphone as first one ball
and then the other strikes the floor. From this recording, we can
accurately determine the quantity T defined as T = ∆t2 −∆t1, i.e.,
the time lag between the first and second impacts. Note that since
the balls do not make any sound when they are released, we have
no way of measuring the individual times ∆t2 and ∆t1.
(a) Find an equation for g in terms of the measured quantities T ,
∆x1 and ∆x2.

√

(b) Check the units of your equation.
(c) Check that your equation gives the correct result in the case
where ∆x1 is very close to zero. However, is this case realistic?
(d) What happens when ∆x1 = ∆x2? Discuss this both mathemat-
ically and physically.

28 The speed required for a low-earth orbit is 7.9×103 m/s (see
ch. 10). When a rocket is launched into orbit, it goes up a little at
first to get above almost all of the atmosphere, but then tips over
horizontally to build up to orbital speed. Suppose the horizontal
acceleration is limited to 3g to keep from damaging the cargo (or
hurting the crew, for a crewed flight). (a) What is the minimum
distance the rocket must travel downrange before it reaches orbital
speed? How much does it matter whether you take into account the
initial eastward velocity due to the rotation of the earth? (b) Rather
than a rocket ship, it might be advantageous to use a railgun design,
in which the craft would be accelerated to orbital speeds along a
railroad track. This has the advantage that it isn’t necessary to lift
a large mass of fuel, since the energy source is external. Based on
your answer to part a, comment on the feasibility of this design for
crewed launches from the earth’s surface.
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Problem 31.

29 Some fleas can jump as high as 30 cm. The flea only has a
short time to build up speed — the time during which its center of
mass is accelerating upward but its feet are still in contact with the
ground. Make an order-of-magnitude estimate of the acceleration
the flea needs to have while straightening its legs, and state your
answer in units of g, i.e., how many “g’s it pulls.” (For comparison,
fighter pilots black out or die if they exceed about 5 or 10 g’s.)

30 Consider the following passage from Alice in Wonderland, in
which Alice has been falling for a long time down a rabbit hole:

Down, down, down. Would the fall never come to an end? “I
wonder how many miles I’ve fallen by this time?” she said aloud.
“I must be getting somewhere near the center of the earth. Let me
see: that would be four thousand miles down, I think” (for, you see,
Alice had learned several things of this sort in her lessons in the
schoolroom, and though this was not a very good opportunity for
showing off her knowledge, as there was no one to listen to her, still
it was good practice to say it over)...

Alice doesn’t know much physics, but let’s try to calculate the
amount of time it would take to fall four thousand miles, starting
from rest with an acceleration of 10 m/s2. This is really only a lower
limit; if there really was a hole that deep, the fall would actually
take a longer time than the one you calculate, both because there
is air friction and because gravity gets weaker as you get deeper (at
the center of the earth, g is zero, because the earth is pulling you
equally in every direction at once).

31 The photo shows Apollo 16 astronaut John Young jumping
on the moon and saluting at the top of his jump. The video footage
of the jump shows him staying aloft for 1.45 seconds. Gravity on
the moon is 1/6 as strong as on the earth. Compute the height of
the jump.

√
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Isaac Newton

Chapter 4

Force and Motion

If I have seen farther than others, it is because I have stood
on the shoulders of giants.

Newton, referring to Galileo

Even as great and skeptical a genius as Galileo was unable to
make much progress on the causes of motion. It was not until a gen-
eration later that Isaac Newton (1642-1727) was able to attack the
problem successfully. In many ways, Newton’s personality was the
opposite of Galileo’s. Where Galileo agressively publicized his ideas,
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a / Aristotle said motion had
to be caused by a force. To
explain why an arrow kept flying
after the bowstring was no longer
pushing on it, he said the air
rushed around behind the arrow
and pushed it forward. We know
this is wrong, because an arrow
shot in a vacuum chamber does
not instantly drop to the floor
as it leaves the bow. Galileo
and Newton realized that a force
would only be needed to change
the arrow’s motion, not to make
its motion continue.

Newton had to be coaxed by his friends into publishing a book on
his physical discoveries. Where Galileo’s writing had been popular
and dramatic, Newton originated the stilted, impersonal style that
most people think is standard for scientific writing. (Scientific jour-
nals today encourage a less ponderous style, and papers are often
written in the first person.) Galileo’s talent for arousing animos-
ity among the rich and powerful was matched by Newton’s skill at
making himself a popular visitor at court. Galileo narrowly escaped
being burned at the stake, while Newton had the good fortune of be-
ing on the winning side of the revolution that replaced King James
II with William and Mary of Orange, leading to a lucrative post
running the English royal mint.

Newton discovered the relationship between force and motion,
and revolutionized our view of the universe by showing that the
same physical laws applied to all matter, whether living or nonliv-
ing, on or off of our planet’s surface. His book on force and motion,
the Mathematical Principles of Natural Philosophy, was un-
contradicted by experiment for 200 years, but his other main work,
Optics, was on the wrong track, asserting that light was composed
of particles rather than waves. Newton was also an avid alchemist,
a fact that modern scientists would like to forget.

4.1 Force

We need only explain changes in motion, not motion itself.

So far you’ve studied the measurement of motion in some detail,
but not the reasons why a certain object would move in a certain
way. This chapter deals with the “why” questions. Aristotle’s ideas
about the causes of motion were completely wrong, just like all his
other ideas about physical science, but it will be instructive to start
with them, because they amount to a road map of modern students’
incorrect preconceptions.

Aristotle thought he needed to explain both why motion occurs
and why motion might change. Newton inherited from Galileo the
important counter-Aristotelian idea that motion needs no explana-
tion, that it is only changes in motion that require a physical cause.
Aristotle’s needlessly complex system gave three reasons for motion:

Natural motion, such as falling, came from the tendency of
objects to go to their “natural” place, on the ground, and
come to rest.

Voluntary motion was the type of motion exhibited by ani-
mals, which moved because they chose to.

Forced motion occurred when an object was acted on by some
other object that made it move.
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b / “Our eyes receive blue
light reflected from this painting
because Monet wanted to repre-
sent water with the color blue.”
This is a valid statement at one
level of explanation, but physics
works at the physical level of
explanation, in which blue light
gets to your eyes because it is
reflected by blue pigments in the
paint.

Motion changes due to an interaction between two objects.

In the Aristotelian theory, natural motion and voluntary mo-
tion are one-sided phenomena: the object causes its own motion.
Forced motion is supposed to be a two-sided phenomenon, because
one object imposes its “commands” on another. Where Aristotle
conceived of some of the phenomena of motion as one-sided and
others as two-sided, Newton realized that a change in motion was
always a two-sided relationship of a force acting between two phys-
ical objects.

The one-sided “natural motion” description of falling makes a
crucial omission. The acceleration of a falling object is not caused
by its own “natural” tendencies but by an attractive force between
it and the planet Earth. Moon rocks brought back to our planet do
not “want” to fly back up to the moon because the moon is their
“natural” place. They fall to the floor when you drop them, just
like our homegrown rocks. As we’ll discuss in more detail later in
this course, gravitational forces are simply an attraction that occurs
between any two physical objects. Minute gravitational forces can
even be measured between human-scale objects in the laboratory.

The idea of natural motion also explains incorrectly why things
come to rest. A basketball rolling across a beach slows to a stop
because it is interacting with the sand via a frictional force, not
because of its own desire to be at rest. If it was on a frictionless
surface, it would never slow down. Many of Aristotle’s mistakes
stemmed from his failure to recognize friction as a force.

The concept of voluntary motion is equally flawed. You may
have been a little uneasy about it from the start, because it assumes
a clear distinction between living and nonliving things. Today, how-
ever, we are used to having the human body likened to a complex
machine. In the modern world-view, the border between the living
and the inanimate is a fuzzy no-man’s land inhabited by viruses,
prions, and silicon chips. Furthermore, Aristotle’s statement that
you can take a step forward “because you choose to” inappropriately
mixes two levels of explanation. At the physical level of explana-
tion, the reason your body steps forward is because of a frictional
force acting between your foot and the floor. If the floor was covered
with a puddle of oil, no amount of “choosing to” would enable you
to take a graceful stride forward.

Forces can all be measured on the same numerical scale.

In the Aristotelian-scholastic tradition, the description of mo-
tion as natural, voluntary, or forced was only the broadest level of
classification, like splitting animals into birds, reptiles, mammals,
and amphibians. There might be thousands of types of motion,
each of which would follow its own rules. Newton’s realization that
all changes in motion were caused by two-sided interactions made
it seem that the phenomena might have more in common than had
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been apparent. In the Newtonian description, there is only one cause
for a change in motion, which we call force. Forces may be of differ-
ent types, but they all produce changes in motion according to the
same rules. Any acceleration that can be produced by a magnetic
force can equally well be produced by an appropriately controlled
stream of water. We can speak of two forces as being equal if they
produce the same change in motion when applied in the same situ-
ation, which means that they pushed or pulled equally hard in the
same direction.

The idea of a numerical scale of force and the newton unit were
introduced in chapter 0. To recapitulate briefly, a force is when a
pair of objects push or pull on each other, and one newton is the
force required to accelerate a 1-kg object from rest to a speed of 1
m/s in 1 second.

More than one force on an object

As if we hadn’t kicked poor Aristotle around sufficiently, his
theory has another important flaw, which is important to discuss
because it corresponds to an extremely common student misconcep-
tion. Aristotle conceived of forced motion as a relationship in which
one object was the boss and the other “followed orders.” It there-
fore would only make sense for an object to experience one force at
a time, because an object couldn’t follow orders from two sources at
once. In the Newtonian theory, forces are numbers, not orders, and
if more than one force acts on an object at once, the result is found
by adding up all the forces. It is unfortunate that the use of the
English word “force” has become standard, because to many people
it suggests that you are “forcing” an object to do something. The
force of the earth’s gravity cannot “force” a boat to sink, because
there are other forces acting on the boat. Adding them up gives a
total of zero, so the boat accelerates neither up nor down.

Objects can exert forces on each other at a distance.

Aristotle declared that forces could only act between objects that
were touching, probably because he wished to avoid the type of oc-
cult speculation that attributed physical phenomena to the influence
of a distant and invisible pantheon of gods. He was wrong, however,
as you can observe when a magnet leaps onto your refrigerator or
when the planet earth exerts gravitational forces on objects that are
in the air. Some types of forces, such as friction, only operate be-
tween objects in contact, and are called contact forces. Magnetism,
on the other hand, is an example of a noncontact force. Although
the magnetic force gets stronger when the magnet is closer to your
refrigerator, touching is not required.

Weight

In physics, an object’s weight, FW , is defined as the earth’s
gravitational force on it. The SI unit of weight is therefore the
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c / Forces are applied to a
saxophone. In this example,
positive signs have been used
consistently for forces to the
right, and negative signs for
forces to the left. (The forces
are being applied to different
places on the saxophone, but the
numerical value of a force carries
no information about that.)

Newton. People commonly refer to the kilogram as a unit of weight,
but the kilogram is a unit of mass, not weight. Note that an object’s
weight is not a fixed property of that object. Objects weigh more
in some places than in others, depending on the local strength of
gravity. It is their mass that always stays the same. A baseball
pitcher who can throw a 90-mile-per-hour fastball on earth would
not be able to throw any faster on the moon, because the ball’s
inertia would still be the same.

Positive and negative signs of force

We’ll start by considering only cases of one-dimensional center-
of-mass motion in which all the forces are parallel to the direction of
motion, i.e., either directly forward or backward. In one dimension,
plus and minus signs can be used to indicate directions of forces, as
shown in figure c. We can then refer generically to addition of forces,
rather than having to speak sometimes of addition and sometimes of
subtraction. We add the forces shown in the figure and get 11 N. In
general, we should choose a one-dimensional coordinate system with
its x axis parallel the direction of motion. Forces that point along
the positive x axis are positive, and forces in the opposite direction
are negative. Forces that are not directly along the x axis cannot be
immediately incorporated into this scheme, but that’s OK, because
we’re avoiding those cases for now.

Discussion Questions

A In chapter 0, I defined 1 N as the force that would accelerate a
1-kg mass from rest to 1 m/s in 1 s. Anticipating the following section, you
might guess that 2 N could be defined as the force that would accelerate
the same mass to twice the speed, or twice the mass to the same speed.
Is there an easier way to define 2 N based on the definition of 1 N?

4.2 Newton’s First Law
We are now prepared to make a more powerful restatement of the
principle of inertia.

Newton’s first law
If the total force on an object is zero, its center of mass continues
in the same state of motion.

In other words, an object initially at rest is predicted to remain
at rest if the total force on it is zero, and an object in motion remains
in motion with the same velocity in the same direction. The converse
of Newton’s first law is also true: if we observe an object moving
with constant velocity along a straight line, then the total force on
it must be zero.

In a future physics course or in another textbook, you may en-
counter the term “net force,” which is simply a synonym for total
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force.

What happens if the total force on an object is not zero? It
accelerates. Numerical prediction of the resulting acceleration is the
topic of Newton’s second law, which we’ll discuss in the following
section.

This is the first of Newton’s three laws of motion. It is not
important to memorize which of Newton’s three laws are numbers
one, two, and three. If a future physics teacher asks you something
like, “Which of Newton’s laws are you thinking of,” a perfectly ac-
ceptable answer is “The one about constant velocity when there’s
zero total force.” The concepts are more important than any spe-
cific formulation of them. Newton wrote in Latin, and I am not
aware of any modern textbook that uses a verbatim translation of
his statement of the laws of motion. Clear writing was not in vogue
in Newton’s day, and he formulated his three laws in terms of a con-
cept now called momentum, only later relating it to the concept of
force. Nearly all modern texts, including this one, start with force
and do momentum later.

An elevator example 1
. An elevator has a weight of 5000 N. Compare the forces that the
cable must exert to raise it at constant velocity, lower it at constant
velocity, and just keep it hanging.

. In all three cases the cable must pull up with a force of exactly
5000 N. Most people think you’d need at least a little more than
5000 N to make it go up, and a little less than 5000 N to let it down,
but that’s incorrect. Extra force from the cable is only necessary
for speeding the car up when it starts going up or slowing it down
when it finishes going down. Decreased force is needed to speed
the car up when it gets going down and to slow it down when it
finishes going up. But when the elevator is cruising at constant
velocity, Newton’s first law says that you just need to cancel the
force of the earth’s gravity.

To many students, the statement in the example that the cable’s
upward force “cancels” the earth’s downward gravitational force im-
plies that there has been a contest, and the cable’s force has won,
vanquishing the earth’s gravitational force and making it disappear.
That is incorrect. Both forces continue to exist, but because they
add up numerically to zero, the elevator has no center-of-mass ac-
celeration. We know that both forces continue to exist because they
both have side-effects other than their effects on the car’s center-of-
mass motion. The force acting between the cable and the car con-
tinues to produce tension in the cable and keep the cable taut. The
earth’s gravitational force continues to keep the passengers (whom
we are considering as part of the elevator-object) stuck to the floor
and to produce internal stresses in the walls of the car, which must
hold up the floor.
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Terminal velocity for falling objects example 2
. An object like a feather that is not dense or streamlined does not
fall with constant acceleration, because air resistance is nonneg-
ligible. In fact, its acceleration tapers off to nearly zero within a
fraction of a second, and the feather finishes dropping at constant
speed (known as its terminal velocity). Why does this happen?

. Newton’s first law tells us that the total force on the feather must
have been reduced to nearly zero after a short time. There are
two forces acting on the feather: a downward gravitational force
from the planet earth, and an upward frictional force from the air.
As the feather speeds up, the air friction becomes stronger and
stronger, and eventually it cancels out the earth’s gravitational
force, so the feather just continues with constant velocity without
speeding up any more.

The situation for a skydiver is exactly analogous. It’s just that the
skydiver experiences perhaps a million times more gravitational
force than the feather, and it is not until she is falling very fast
that the force of air friction becomes as strong as the gravita-
tional force. It takes her several seconds to reach terminal veloc-
ity, which is on the order of a hundred miles per hour.

More general combinations of forces

It is too constraining to restrict our attention to cases where
all the forces lie along the line of the center of mass’s motion. For
one thing, we can’t analyze any case of horizontal motion, since
any object on earth will be subject to a vertical gravitational force!
For instance, when you are driving your car down a straight road,
there are both horizontal forces and vertical forces. However, the
vertical forces have no effect on the center of mass motion, because
the road’s upward force simply counteracts the earth’s downward
gravitational force and keeps the car from sinking into the ground.

Later in the book we’ll deal with the most general case of many
forces acting on an object at any angles, using the mathematical
technique of vector addition, but the following slight generalization
of Newton’s first law allows us to analyze a great many cases of
interest:

Suppose that an object has two sets of forces acting on it, one
set along the line of the object’s initial motion and another set per-
pendicular to the first set. If both sets of forces cancel, then the
object’s center of mass continues in the same state of motion.
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d / Example 4.

A passenger riding the subway example 3
. Describe the forces acting on a person standing in a subway
train that is cruising at constant velocity.

. No force is necessary to keep the person moving relative to
the ground. He will not be swept to the back of the train if the
floor is slippery. There are two vertical forces on him, the earth’s
downward gravitational force and the floor’s upward force, which
cancel. There are no horizontal forces on him at all, so of course
the total horizontal force is zero.

Forces on a sailboat example 4
. If a sailboat is cruising at constant velocity with the wind coming
from directly behind it, what must be true about the forces acting
on it?
. The forces acting on the boat must be canceling each other
out. The boat is not sinking or leaping into the air, so evidently
the vertical forces are canceling out. The vertical forces are the
downward gravitational force exerted by the planet earth and an
upward force from the water.

The air is making a forward force on the sail, and if the boat is
not accelerating horizontally then the water’s backward frictional
force must be canceling it out.

Contrary to Aristotle, more force is not needed in order to maintain
a higher speed. Zero total force is always needed to maintain
constant velocity. Consider the following made-up numbers:

boat moving at
a low, constant
velocity

boat moving at
a high, constant
velocity

forward force of
the wind on the
sail . . .

10,000 N 20,000 N

backward force of
the water on the
hull . . .

−10, 000 N −20, 000 N

total force on the
boat . . .

0 N 0 N

The faster boat still has zero total force on it. The forward force
on it is greater, and the backward force smaller (more negative),
but that’s irrelevant because Newton’s first law has to do with the
total force, not the individual forces.

This example is quite analogous to the one about terminal velocity
of falling objects, since there is a frictional force that increases
with speed. After casting off from the dock and raising the sail,
the boat will accelerate briefly, and then reach its terminal velocity,
at which the water’s frictional force has become as great as the
wind’s force on the sail.
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Discussion question B.

Discussion question C.

A car crash example 5
. If you drive your car into a brick wall, what is the mysterious
force that slams your face into the steering wheel?

. Your surgeon has taken physics, so she is not going to believe
your claim that a mysterious force is to blame. She knows that
your face was just following Newton’s first law. Immediately after
your car hit the wall, the only forces acting on your head were
the same canceling-out forces that had existed previously: the
earth’s downward gravitational force and the upward force from
your neck. There were no forward or backward forces on your
head, but the car did experience a backward force from the wall,
so the car slowed down and your face caught up.

Discussion Questions

A Newton said that objects continue moving if no forces are acting
on them, but his predecessor Aristotle said that a force was necessary to
keep an object moving. Why does Aristotle’s theory seem more plausible,
even though we now believe it to be wrong? What insight was Aristotle
missing about the reason why things seem to slow down naturally? Give
an example.

B In the figure what would have to be true about the saxophone’s initial
motion if the forces shown were to result in continued one-dimensional
motion of its center of mass?

C This figure requires an ever further generalization of the preceding
discussion. After studying the forces, what does your physical intuition tell
you will happen? Can you state in words how to generalize the conditions
for one-dimensional motion to include situations like this one?

4.3 Newton’s Second Law
What about cases where the total force on an object is not zero,
so that Newton’s first law doesn’t apply? The object will have an
acceleration. The way we’ve defined positive and negative signs
of force and acceleration guarantees that positive forces produce
positive accelerations, and likewise for negative values. How much
acceleration will it have? It will clearly depend on both the object’s
mass and on the amount of force.

Experiments with any particular object show that its acceler-
ation is directly proportional to the total force applied to it. This
may seem wrong, since we know of many cases where small amounts
of force fail to move an object at all, and larger forces get it going.
This apparent failure of proportionality actually results from for-
getting that there is a frictional force in addition to the force we
apply to move the object. The object’s acceleration is exactly pro-
portional to the total force on it, not to any individual force on it.
In the absence of friction, even a very tiny force can slowly change
the velocity of a very massive object.

Experiments also show that the acceleration is inversely propor-
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tional to the object’s mass, and combining these two proportional-
ities gives the following way of predicting the acceleration of any
object:

Newton’s second law

a = Ftotal/m ,

where

m is an object’s mass

Ftotal is the sum of the forces acting on it, and

a is the acceleration of the object’s center of mass.

We are presently restricted to the case where the forces of interest
are parallel to the direction of motion.

An accelerating bus example 6
. A VW bus with a mass of 2000 kg accelerates from 0 to 25 m/s
(freeway speed) in 34 s. Assuming the acceleration is constant,
what is the total force on the bus?

. We solve Newton’s second law for Ftotal = ma, and substitute
∆v/∆t for a, giving

Ftotal = m∆v/∆t
= (2000 kg)(25 m/s− 0 m/s)/(34 s)
= 1.5 kN .

A generalization

As with the first law, the second law can be easily generalized
to include a much larger class of interesting situations:

Suppose an object is being acted on by two sets of forces,
one set lying along the object’s initial direction of motion and
another set acting along a perpendicular line. If the forces
perpendicular to the initial direction of motion cancel out,
then the object accelerates along its original line of motion
according to a = Ftotal/m.

The relationship between mass and weight

Mass is different from weight, but they’re related. An apple’s
mass tells us how hard it is to change its motion. Its weight measures
the strength of the gravitational attraction between the apple and
the planet earth. The apple’s weight is less on the moon, but its
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e / A simple double-pan bal-
ance works by comparing the
weight forces exerted by the
earth on the contents of the two
pans. Since the two pans are
at almost the same location on
the earth’s surface, the value
of g is essentially the same for
each one, and equality of weight
therefore also implies equality of
mass.

f / Example 7.

mass is the same. Astronauts assembling the International Space
Station in zero gravity cannot just pitch massive modules back and
forth with their bare hands; the modules are weightless, but not
massless.

We have already seen the experimental evidence that when weight
(the force of the earth’s gravity) is the only force acting on an ob-
ject, its acceleration equals the constant g, and g depends on where
you are on the surface of the earth, but not on the mass of the ob-
ject. Applying Newton’s second law then allows us to calculate the
magnitude of the gravitational force on any object in terms of its
mass:

|FW | = mg .

(The equation only gives the magnitude, i.e. the absolute value, of
FW , because we’re defining g as a positive number, so it equals the
absolute value of a falling object’s acceleration.)

. Solved problem: Decelerating a car page 142, problem 7

Weight and mass example 7
. Figure f shows masses of one and two kilograms hung from a
spring scale, which measures force in units of newtons. Explain
the readings.

. Let’s start with the single kilogram. It’s not accelerating, so
evidently the total force on it is zero: the spring scale’s upward
force on it is canceling out the earth’s downward gravitational
force. The spring scale tells us how much force it is being obliged
to supply, but since the two forces are equal in strength, the
spring scale’s reading can also be interpreted as measuring the
strength of the gravitational force, i.e., the weight of the one-
kilogram mass. The weight of a one-kilogram mass should be

FW = mg

= (1.0 kg)(9.8 m/s2) = 9.8 N ,

and that’s indeed the reading on the spring scale.

Similarly for the two-kilogram mass, we have

FW = mg

= (2.0 kg)(9.8 m/s2) = 19.6 N .

Calculating terminal velocity example 8
. Experiments show that the force of air friction on a falling object
such as a skydiver or a feather can be approximated fairly well
with the equation |Fair | = cρAv2, where c is a constant, ρ is the
density of the air, A is the cross-sectional area of the object as
seen from below, and v is the object’s velocity. Predict the object’s
terminal velocity, i.e., the final velocity it reaches after a long time.
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x (m) t (s)
10 1.84
20 2.86
30 3.80
40 4.67
50 5.53
60 6.38
70 7.23
80 8.10
90 8.96
100 9.83

g / Discussion question D.

. As the object accelerates, its greater v causes the upward force
of the air to increase until finally the gravitational force and the
force of air friction cancel out, after which the object continues
at constant velocity. We choose a coordinate system in which
positive is up, so that the gravitational force is negative and the
force of air friction is positive. We want to find the velocity at which

Fair + FW = 0 , i .e.,

cρAv2 −mg = 0 .

Solving for v gives

vterminal =
√

mg
cρA

self-check A
It is important to get into the habit of interpreting equations. This may be
difficult at first, but eventually you will get used to this kind of reasoning.

(1) Interpret the equation vterminal =
√

mg/cρA in the case of ρ=0.

(2) How would the terminal velocity of a 4-cm steel ball compare to that
of a 1-cm ball?

(3) In addition to teasing out the mathematical meaning of an equation,
we also have to be able to place it in its physical context. How generally
important is this equation? . Answer, p. 273

Discussion Questions

A Show that the Newton can be reexpressed in terms of the three
basic mks units as the combination kg·m/s2.

B What is wrong with the following statements?

(1) “g is the force of gravity.”

(2) “Mass is a measure of how much space something takes up.”

C Criticize the following incorrect statement:

“If an object is at rest and the total force on it is zero, it stays at rest.
There can also be cases where an object is moving and keeps on moving
without having any total force on it, but that can only happen when there’s
no friction, like in outer space.”
D Table g gives laser timing data for Ben Johnson’s 100 m dash at the
1987 World Championship in Rome. (His world record was later revoked
because he tested positive for steroids.) How does the total force on him
change over the duration of the race?
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4.4 What Force Is Not
Violin teachers have to endure their beginning students’ screeching.
A frown appears on the woodwind teacher’s face as she watches her
student take a breath with an expansion of his ribcage but none
in his belly. What makes physics teachers cringe is their students’
verbal statements about forces. Below I have listed several dicta
about what force is not.

Force is not a property of one object.

A great many of students’ incorrect descriptions of forces could
be cured by keeping in mind that a force is an interaction of two
objects, not a property of one object.

Incorrect statement: “That magnet has a lot of force.”

If the magnet is one millimeter away from a steel ball bearing, they
may exert a very strong attraction on each other, but if they were a
meter apart, the force would be virtually undetectable. The magnet’s
strength can be rated using certain electrical units (ampere−meters2),
but not in units of force.

Force is not a measure of an object’s motion.

If force is not a property of a single object, then it cannot be
used as a measure of the object’s motion.

Incorrect statement: “The freight train rumbled down the tracks with
awesome force.”

Force is not a measure of motion. If the freight train collides with a
stalled cement truck, then some awesome forces will occur, but if it hits
a fly the force will be small.

Force is not energy.

There are two main approaches to understanding the motion of
objects, one based on force and one on a different concept, called en-
ergy. The SI unit of energy is the Joule, but you are probably more
familiar with the calorie, used for measuring food’s energy, and the
kilowatt-hour, the unit the electric company uses for billing you.
Physics students’ previous familiarity with calories and kilowatt-
hours is matched by their universal unfamiliarity with measuring
forces in units of Newtons, but the precise operational definitions of
the energy concepts are more complex than those of the force con-
cepts, and textbooks, including this one, almost universally place the
force description of physics before the energy description. During
the long period after the introduction of force and before the careful
definition of energy, students are therefore vulnerable to situations
in which, without realizing it, they are imputing the properties of
energy to phenomena of force.

Incorrect statement: “How can my chair be making an upward force on
my rear end? It has no power!”

Power is a concept related to energy, e.g., a 100-watt lightbulb uses
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up 100 joules per second of energy. When you sit in a chair, no energy
is used up, so forces can exist between you and the chair without any
need for a source of power.

Force is not stored or used up.

Because energy can be stored and used up, people think force
also can be stored or used up.

Incorrect statement: “If you don’t fill up your tank with gas, you’ll run
out of force.”

Energy is what you’ll run out of, not force.

Forces need not be exerted by living things or Machines.

Transforming energy from one form into another usually requires
some kind of living or mechanical mechanism. The concept is not
applicable to forces, which are an interaction between objects, not
a thing to be transferred or transformed.

Incorrect statement: “How can a wooden bench be making an upward
force on my rear end? It doesn’t have any springs or anything inside it.”

No springs or other internal mechanisms are required. If the bench
didn’t make any force on you, you would obey Newton’s second law and
fall through it. Evidently it does make a force on you!

A force is the direct cause of a change in motion.

I can click a remote control to make my garage door change from
being at rest to being in motion. My finger’s force on the button,
however, was not the force that acted on the door. When we speak
of a force on an object in physics, we are talking about a force that
acts directly. Similarly, when you pull a reluctant dog along by its
leash, the leash and the dog are making forces on each other, not
your hand and the dog. The dog is not even touching your hand.

self-check B
Which of the following things can be correctly described in terms of
force?

(1) A nuclear submarine is charging ahead at full steam.

(2) A nuclear submarine’s propellers spin in the water.

(3) A nuclear submarine needs to refuel its reactor periodically. .

Answer, p. 273

Discussion Questions

A Criticize the following incorrect statement: “If you shove a book
across a table, friction takes away more and more of its force, until finally
it stops.”

B You hit a tennis ball against a wall. Explain any and all incorrect
ideas in the following description of the physics involved: “The ball gets
some force from you when you hit it, and when it hits the wall, it loses part
of that force, so it doesn’t bounce back as fast. The muscles in your arm
are the only things that a force can come from.”
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4.5 Inertial and Noninertial Frames of
Reference

One day, you’re driving down the street in your pickup truck, on
your way to deliver a bowling ball. The ball is in the back of the
truck, enjoying its little jaunt and taking in the fresh air and sun-
shine. Then you have to slow down because a stop sign is coming
up. As you brake, you glance in your rearview mirror, and see your
trusty companion accelerating toward you. Did some mysterious
force push it forward? No, it only seems that way because you and
the car are slowing down. The ball is faithfully obeying Newton’s
first law, and as it continues at constant velocity it gets ahead rela-
tive to the slowing truck. No forces are acting on it (other than the
same canceling-out vertical forces that were always acting on it).1

The ball only appeared to violate Newton’s first law because there
was something wrong with your frame of reference, which was based
on the truck.

h / 1. In a frame of reference that
moves with the truck, the bowl-
ing ball appears to violate New-
ton’s first law by accelerating de-
spite having no horizontal forces
on it. 2. In an inertial frame of ref-
erence, which the surface of the
earth approximately is, the bowl-
ing ball obeys Newton’s first law.
It moves equal distances in equal
time intervals, i.e., maintains con-
stant velocity. In this frame of
reference, it is the truck that ap-
pears to have a change in veloc-
ity, which makes sense, since the
road is making a horizontal force
on it.

How, then, are we to tell in which frames of reference Newton’s
laws are valid? It’s no good to say that we should avoid moving
frames of reference, because there is no such thing as absolute rest
or absolute motion. All frames can be considered as being either at
rest or in motion. According to an observer in India, the strip mall
that constituted the frame of reference in panel (b) of the figure
was moving along with the earth’s rotation at hundreds of miles per
hour.

1Let’s assume for simplicity that there is no friction.
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The reason why Newton’s laws fail in the truck’s frame of refer-
ence is not because the truck is moving but because it is accelerating.
(Recall that physicists use the word to refer either to speeding up or
slowing down.) Newton’s laws were working just fine in the moving
truck’s frame of reference as long as the truck was moving at con-
stant velocity. It was only when its speed changed that there was
a problem. How, then, are we to tell which frames are accelerating
and which are not? What if you claim that your truck is not ac-
celerating, and the sidewalk, the asphalt, and the Burger King are
accelerating? The way to settle such a dispute is to examine the
motion of some object, such as the bowling ball, which we know
has zero total force on it. Any frame of reference in which the ball
appears to obey Newton’s first law is then a valid frame of reference,
and to an observer in that frame, Mr. Newton assures us that all
the other objects in the universe will obey his laws of motion, not
just the ball.

Valid frames of reference, in which Newton’s laws are obeyed,
are called inertial frames of reference. Frames of reference that are
not inertial are called noninertial frames. In those frames, objects
violate the principle of inertia and Newton’s first law. While the
truck was moving at constant velocity, both it and the sidewalk
were valid inertial frames. The truck became an invalid frame of
reference when it began changing its velocity.

You usually assume the ground under your feet is a perfectly
inertial frame of reference, and we made that assumption above. It
isn’t perfectly inertial, however. Its motion through space is quite
complicated, being composed of a part due to the earth’s daily rota-
tion around its own axis, the monthly wobble of the planet caused
by the moon’s gravity, and the rotation of the earth around the sun.
Since the accelerations involved are numerically small, the earth is
approximately a valid inertial frame.

Noninertial frames are avoided whenever possible, and we will
seldom, if ever, have occasion to use them in this course. Sometimes,
however, a noninertial frame can be convenient. Naval gunners, for
instance, get all their data from radars, human eyeballs, and other
detection systems that are moving along with the earth’s surface.
Since their guns have ranges of many miles, the small discrepan-
cies between their shells’ actual accelerations and the accelerations
predicted by Newton’s second law can have effects that accumulate
and become significant. In order to kill the people they want to kill,
they have to add small corrections onto the equation a = Ftotal/m.
Doing their calculations in an inertial frame would allow them to
use the usual form of Newton’s second law, but they would have
to convert all their data into a different frame of reference, which
would require cumbersome calculations.
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Discussion Question

A If an object has a linear x − t graph in a certain inertial frame,
what is the effect on the graph if we change to a coordinate system with
a different origin? What is the effect if we keep the same origin but re-
verse the positive direction of the x axis? How about an inertial frame
moving alongside the object? What if we describe the object’s motion in
a noninertial frame?
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Summary
Selected Vocabulary
weight . . . . . . . the force of gravity on an object, equal to mg
inertial frame . . a frame of reference that is not accelerating,

one in which Newton’s first law is true
noninertial frame an accelerating frame of reference, in which

Newton’s first law is violated

Notation
FW . . . . . . . . weight

Other Terminology and Notation
net force . . . . . another way of saying “total force”

Summary

Newton’s first law of motion states that if all the forces on an
object cancel each other out, then the object continues in the same
state of motion. This is essentially a more refined version of Galileo’s
principle of inertia, which did not refer to a numerical scale of force.

Newton’s second law of motion allows the prediction of an ob-
ject’s acceleration given its mass and the total force on it, acm =
Ftotal/m. This is only the one-dimensional version of the law; the
full-three dimensional treatment will come in chapter 8, Vectors.
Without the vector techniques, we can still say that the situation
remains unchanged by including an additional set of vectors that
cancel among themselves, even if they are not in the direction of
motion.

Newton’s laws of motion are only true in frames of reference that
are not accelerating, known as inertial frames.

Exploring Further

Isaac Newton: The Last Sorcerer, Michael White. An excel-
lent biography of Newton that brings us closer to the real man.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 An object is observed to be moving at constant speed in a
certain direction. Can you conclude that no forces are acting on it?
Explain. [Based on a problem by Serway and Faughn.]

2 A car is normally capable of an acceleration of 3 m/s2. If it
is towing a trailer with half as much mass as the car itself, what ac-
celeration can it achieve? [Based on a problem from PSSC Physics.]

3 (a) Let T be the maximum tension that an elevator’s cable can
withstand without breaking, i.e., the maximum force it can exert.
If the motor is programmed to give the car an acceleration a, what
is the maximum mass that the car can have, including passengers,
if the cable is not to break?

√

(b) Interpret the equation you derived in the special cases of a = 0
and of a downward acceleration of magnitude g.

(“Interpret” means to analyze the behavior of the equation, and
connect that to reality, as in the self-check on page 134.)

4 A helicopter of mass m is taking off vertically. The only forces
acting on it are the earth’s gravitational force and the force, Fair,
of the air pushing up on the propeller blades.
(a) If the helicopter lifts off at t = 0, what is its vertical speed at
time t?
(b) Plug numbers into your equation from part a, using m = 2300
kg, Fair = 27000 N, and t = 4.0 s.

5 In the 1964 Olympics in Tokyo, the best men’s high jump was
2.18 m. Four years later in Mexico City, the gold medal in the same
event was for a jump of 2.24 m. Because of Mexico City’s altitude
(2400 m), the acceleration of gravity there is lower than that in
Tokyo by about 0.01 m/s2. Suppose a high-jumper has a mass of
72 kg.
(a) Compare his mass and weight in the two locations.
(b) Assume that he is able to jump with the same initial vertical
velocity in both locations, and that all other conditions are the same
except for gravity. How much higher should he be able to jump in
Mexico City?

√

(Actually, the reason for the big change between ’64 and ’68 was the
introduction of the “Fosbury flop.”) ?
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Problem 6.

6 A blimp is initially at rest, hovering, when at t = 0 the pilot
turns on the motor of the propeller. The motor cannot instantly
get the propeller going, but the propeller speeds up steadily. The
steadily increasing force between the air and the propeller is given
by the equation F = kt, where k is a constant. If the mass of the
blimp is m, find its position as a function of time. (Assume that
during the period of time you’re dealing with, the blimp is not yet
moving fast enough to cause a significant backward force due to air
resistance.)

√ ∫
7 A car is accelerating forward along a straight road. If the force
of the road on the car’s wheels, pushing it forward, is a constant 3.0
kN, and the car’s mass is 1000 kg, then how long will the car take
to go from 20 m/s to 50 m/s? . Solution, p. 279

8 Some garden shears are like a pair of scissors: one sharp blade
slices past another. In the “anvil” type, however, a sharp blade
presses against a flat one rather than going past it. A gardening
book says that for people who are not very physically strong, the
anvil type can make it easier to cut tough branches, because it
concentrates the force on one side. Evaluate this claim based on
Newton’s laws. [Hint: Consider the forces acting on the branch,
and the motion of the branch.]

9 A uranium atom deep in the earth spits out an alpha particle.
An alpha particle is a fragment of an atom. This alpha particle has
initial speed v, and travels a distance d before stopping in the earth.
(a) Find the force, F , that acted on the particle, in terms of v, d,
and its mass, m. Don’t plug in any numbers yet. Assume that the
force was constant.

√

(b) Show that your answer has the right units.
(c) Discuss how your answer to part a depends on all three variables,
and show that it makes sense. That is, for each variable, discuss
what would happen to the result if you changed it while keeping the
other two variables constant. Would a bigger value give a smaller
result, or a bigger result? Once you’ve figured out this mathematical
relationship, show that it makes sense physically.
(d) Evaluate your result for m = 6.7×10−27 kg, v = 2.0×104 km/s,
and d = 0.71 mm.

√
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Problem 10, part c.

10 You are given a large sealed box, and are not allowed to open
it. Which of the following experiments measure its mass, and which
measure its weight? [Hint: Which experiments would give different
results on the moon?]
(a) Put it on a frozen lake, throw a rock at it, and see how fast it
scoots away after being hit.
(b) Drop it from a third-floor balcony, and measure how loud the
sound is when it hits the ground.
(c) As shown in the figure, connect it with a spring to the wall, and
watch it vibrate.

. Solution, p. 279

11 While escaping from the palace of the evil Martian em-
peror, Sally Spacehound jumps from a tower of height h down to
the ground. Ordinarily the fall would be fatal, but she fires her
blaster rifle straight down, producing an upward force of magnitude
FB. This force is insufficient to levitate her, but it does cancel out
some of the force of gravity. During the time t that she is falling,
Sally is unfortunately exposed to fire from the emperor’s minions,
and can’t dodge their shots. Let m be her mass, and g the strength
of gravity on Mars.
(a) Find the time t in terms of the other variables.
(b) Check the units of your answer to part a.
(c) For sufficiently large values of FB, your answer to part a becomes
nonsense — explain what’s going on.

√

12 When I cook rice, some of the dry grains always stick to the
measuring cup. To get them out, I turn the measuring cup upside-
down, and hit the back of the cup with my hand. Explain why this
works, and why its success depends on hitting the cup hard enough.
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What forces act on the girl?

Chapter 5

Analysis of Forces

5.1 Newton’s Third Law
Newton created the modern concept of force starting from his insight
that all the effects that govern motion are interactions between two
objects: unlike the Aristotelian theory, Newtonian physics has no
phenomena in which an object changes its own motion.

Is one object always the “order-giver” and the other the “order-

145



a / Two magnets exert forces
on each other.

b / Two people’s hands exert
forces on each other.

c / Rockets work by pushing
exhaust gases out the back.
Newton’s third law says that if the
rocket exerts a backward force
on the gases, the gases must
make an equal forward force on
the rocket. Rocket engines can
function above the atmosphere,
unlike propellers and jets, which
work by pushing against the
surrounding air.

follower”? As an example, consider a batter hitting a baseball. The
bat definitely exerts a large force on the ball, because the ball ac-
celerates drastically. But if you have ever hit a baseball, you also
know that the ball makes a force on the bat — often with painful
results if your technique is as bad as mine!

How does the ball’s force on the bat compare with the bat’s
force on the ball? The bat’s acceleration is not as spectacular as
the ball’s, but maybe we shouldn’t expect it to be, since the bat’s
mass is much greater. In fact, careful measurements of both objects’
masses and accelerations would show that mballaball is very nearly
equal to −mbatabat, which suggests that the ball’s force on the bat
is of the same magnitude as the bat’s force on the ball, but in the
opposite direction.

Figures a and b show two somewhat more practical laboratory
experiments for investigating this issue accurately and without too
much interference from extraneous forces.

In experiment a, a large magnet and a small magnet are weighed
separately, and then one magnet is hung from the pan of the top
balance so that it is directly above the other magnet. There is an
attraction between the two magnets, causing the reading on the top
scale to increase and the reading on the bottom scale to decrease.
The large magnet is more “powerful” in the sense that it can pick
up a heavier paperclip from the same distance, so many people have
a strong expectation that one scale’s reading will change by a far
different amount than the other. Instead, we find that the two
changes are equal in magnitude but opposite in direction: the force
of the bottom magnet pulling down on the top one has the same
strength as the force of the top one pulling up on the bottom one.

In experiment b, two people pull on two spring scales. Regardless
of who tries to pull harder, the two forces as measured on the spring
scales are equal. Interposing the two spring scales is necessary in
order to measure the forces, but the outcome is not some artificial
result of the scales’ interactions with each other. If one person slaps
another hard on the hand, the slapper’s hand hurts just as much
as the slappee’s, and it doesn’t matter if the recipient of the slap
tries to be inactive. (Punching someone in the mouth causes just
as much force on the fist as on the lips. It’s just that the lips are
more delicate. The forces are equal, but not the levels of pain and
injury.)

Newton, after observing a series of results such as these, decided
that there must be a fundamental law of nature at work:

Newton’s third law
Forces occur in equal and opposite pairs: whenever object A exerts
a force on object B, object B must also be exerting a force on object
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d / A swimmer doing the breast
stroke pushes backward against
the water. By Newton’s third law,
the water pushes forward on him.

e / Newton’s third law does
not mean that forces always
cancel out so that nothing can
ever move. If these two figure
skaters, initially at rest, push
against each other, they will both
move.

A. The two forces are equal in magnitude and opposite in direction.

In one-dimensional situations, we can use plus and minus signs to
indicate the directions of forces, and Newton’s third law can be
written succinctly as FA on B = −FB on A.

self-check A
Figure d analyzes swimming using Newton’s third law. Do a similar
analysis for a sprinter leaving the starting line. . Answer, p. 273

There is no cause and effect relationship between the two forces
in Newton’s third law. There is no “original” force, and neither one
is a response to the other. The pair of forces is a relationship, like
marriage, not a back-and-forth process like a tennis match. Newton
came up with the third law as a generalization about all the types of
forces with which he was familiar, such as frictional and gravitational
forces. When later physicists discovered a new type force, such
as the force that holds atomic nuclei together, they had to check
whether it obeyed Newton’s third law. So far, no violation of the
third law has ever been discovered, whereas the first and second
laws were shown to have limitations by Einstein and the pioneers of
atomic physics.

The English vocabulary for describing forces is unfortunately
rooted in Aristotelianism, and often implies incorrectly that forces
are one-way relationships. It is unfortunate that a half-truth such as
“the table exerts an upward force on the book” is so easily expressed,
while a more complete and correct description ends up sounding
awkward or strange: “the table and the book interact via a force,”
or “the table and book participate in a force.”

To students, it often sounds as though Newton’s third law im-
plies nothing could ever change its motion, since the two equal and
opposite forces would always cancel. The two forces, however, are
always on two different objects, so it doesn’t make sense to add
them in the first place — we only add forces that are acting on the
same object. If two objects are interacting via a force and no other
forces are involved, then both objects will accelerate — in opposite
directions!

A mnemonic for using newton’s third law correctly

Mnemonics are tricks for memorizing things. For instance, the
musical notes that lie between the lines on the treble clef spell the
word FACE, which is easy to remember. Many people use the
mnemonic “SOHCAHTOA” to remember the definitions of the sine,
cosine, and tangent in trigonometry. I have my own modest offering,
POFOSTITO, which I hope will make it into the mnemonics hall of
fame. It’s a way to avoid some of the most common problems with
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f / It doesn’t make sense for the
man to talk about using the
woman’s money to cancel out his
bar tab, because there is no good
reason to combine his debts and
her assets. Similarly, it doesn’t
make sense to refer to the equal
and opposite forces of Newton’s
third law as canceling. It only
makes sense to add up forces
that are acting on the same ob-
ject, whereas two forces related
to each other by Newton’s third
law are always acting on two dif-
ferent objects.

applying Newton’s third law correctly:

A book lying on a table example 1
. A book is lying on a table. What force is the Newton’s-third-law
partner of the earth’s gravitational force on the book?

Answer: Newton’s third law works like “B on A, A on B,” so the
partner must be the book’s gravitational force pulling upward on
the planet earth. Yes, there is such a force! No, it does not cause
the earth to do anything noticeable.

Incorrect answer: The table’s upward force on the book is the
Newton’s-third-law partner of the earth’s gravitational force on the
book.

This answer violates two out of three of the commandments of
POFOSTITO. The forces are not of the same type, because the
table’s upward force on the book is not gravitational. Also, three
objects are involved instead of two: the book, the table, and the
planet earth.

Pushing a box up a hill example 2
. A person is pushing a box up a hill. What force is related by
Newton’s third law to the person’s force on the box?

. The box’s force on the person.
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Incorrect answer: The person’s force on the box is opposed by
friction, and also by gravity.

This answer fails all three parts of the POFOSTITO test, the most
obvious of which is that three forces are referred to instead of a
pair.

. Solved problem: More about example 2 page 172, problem 20

. Solved problem: Why did it accelerate? page 172, problem 18

Optional Topic: Newton’s Third Law and Action at a Distance
Newton’s third law is completely symmetric in the sense that neither
force constitutes a delayed response to the other. Newton’s third law
does not even mention time, and the forces are supposed to agree at
any given instant. This creates an interesting situation when it comes
to noncontact forces. Suppose two people are holding magnets, and
when one person waves or wiggles her magnet, the other person feels
an effect on his. In this way they can send signals to each other from
opposite sides of a wall, and if Newton’s third law is correct, it would
seem that the signals are transmitted instantly, with no time lag. The
signals are indeed transmitted quite quickly, but experiments with elec-
tronically controlled magnets show that the signals do not leap the gap
instantly: they travel at the same speed as light, which is an extremely
high speed but not an infinite one.

Is this a contradiction to Newton’s third law? Not really. Accord-
ing to current theories, there are no true noncontact forces. Action at
a distance does not exist. Although it appears that the wiggling of one
magnet affects the other with no need for anything to be in contact with
anything, what really happens is that wiggling a magnet unleashes a
shower of tiny particles called photons. The magnet shoves the pho-
tons out with a kick, and receives a kick in return, in strict obedience to
Newton’s third law. The photons fly out in all directions, and the ones
that hit the other magnet then interact with it, again obeying Newton’s
third law.

Photons are nothing exotic, really. Light is made of photons, but our
eyes receive such huge numbers of photons that we do not perceive
them individually. The photons you would make by wiggling a magnet
with your hand would be of a “color” that you cannot see, far off the red
end of the rainbow. Book 6 in this series describes the evidence for the
photon model of light.
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g / A scientific classification
system.

Discussion Questions

A When you fire a gun, the exploding gases push outward in all
directions, causing the bullet to accelerate down the barrel. What third-
law pairs are involved? [Hint: Remember that the gases themselves are
an object.]

B Tam Anh grabs Sarah by the hand and tries to pull her. She tries
to remain standing without moving. A student analyzes the situation as
follows. “If Tam Anh’s force on Sarah is greater than her force on him,
he can get her to move. Otherwise, she’ll be able to stay where she is.”
What’s wrong with this analysis?

C You hit a tennis ball against a wall. Explain any and all incorrect
ideas in the following description of the physics involved: “According to
Newton’s third law, there has to be a force opposite to your force on the
ball. The opposite force is the ball’s mass, which resists acceleration, and
also air resistance.”

5.2 Classification and Behavior of Forces
One of the most basic and important tasks of physics is to classify

the forces of nature. I have already referred informally to “types” of
forces such as friction, magnetism, gravitational forces, and so on.
Classification systems are creations of the human mind, so there is
always some degree of arbitrariness in them. For one thing, the level
of detail that is appropriate for a classification system depends on
what you’re trying to find out. Some linguists, the “lumpers,” like to
emphasize the similarities among languages, and a few extremists
have even tried to find signs of similarities between words in lan-
guages as different as English and Chinese, lumping the world’s lan-
guages into only a few large groups. Other linguists, the “splitters,”
might be more interested in studying the differences in pronuncia-
tion between English speakers in New York and Connecticut. The
splitters call the lumpers sloppy, but the lumpers say that science
isn’t worthwhile unless it can find broad, simple patterns within the
seemingly complex universe.

Scientific classification systems are also usually compromises be-
tween practicality and naturalness. An example is the question of
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how to classify flowering plants. Most people think that biological
classification is about discovering new species, naming them, and
classifying them in the class-order-family-genus-species system ac-
cording to guidelines set long ago. In reality, the whole system is in
a constant state of flux and controversy. One very practical way of
classifying flowering plants is according to whether their petals are
separate or joined into a tube or cone — the criterion is so clear that
it can be applied to a plant seen from across the street. But here
practicality conflicts with naturalness. For instance, the begonia has
separate petals and the pumpkin has joined petals, but they are so
similar in so many other ways that they are usually placed within
the same order. Some taxonomists have come up with classification
criteria that they claim correspond more naturally to the apparent
relationships among plants, without having to make special excep-
tions, but these may be far less practical, requiring for instance the
examination of pollen grains under an electron microscope.

In physics, there are two main systems of classification for forces.
At this point in the course, you are going to learn one that is very
practical and easy to use, and that splits the forces up into a rel-
atively large number of types: seven very common ones that we’ll
discuss explicitly in this chapter, plus perhaps ten less important
ones such as surface tension, which we will not bother with right
now.

Physicists, however, are obsessed with finding simple patterns,
so recognizing as many as fifteen or twenty types of forces strikes
them as distasteful and overly complex. Since about the year 1900,
physics has been on an aggressive program to discover ways in which
these many seemingly different types of forces arise from a smaller
number of fundamental ones. For instance, when you press your
hands together, the force that keeps them from passing through each
other may seem to have nothing to do with electricity, but at the
atomic level, it actually does arise from electrical repulsion between
atoms. By about 1950, all the forces of nature had been explained
as arising from four fundamental types of forces at the atomic and
nuclear level, and the lumping-together process didn’t stop there.
By the 1960’s the length of the list had been reduced to three, and
some theorists even believe that they may be able to reduce it to
two or one. Although the unification of the forces of nature is one of
the most beautiful and important achievements of physics, it makes
much more sense to start this course with the more practical and
easy system of classification. The unified system of four forces will
be one of the highlights of the end of your introductory physics
sequence.

Section 5.2 Classification and Behavior of Forces 151



h / A practical classification scheme for forces.

The practical classification scheme which concerns us now can
be laid out in the form of the tree shown in figure h. The most
specific types of forces are shown at the tips of the branches, and
it is these types of forces that are referred to in the POFOSTITO
mnemonic. For example, electrical and magnetic forces belong to
the same general group, but Newton’s third law would never relate
an electrical force to a magnetic force.

152 Chapter 5 Analysis of Forces



Hitting a wall example 3
. A bullet, flying horizontally, hits a steel wall. What type of force
is there between the bullet and the wall?

. Starting at the bottom of the tree, we determine that the force
is a contact force, because it only occurs once the bullet touches
the wall. Both objects are solid. The wall forms a vertical plane.
If the nose of the bullet was some shape like a sphere, you might
imagine that it would only touch the wall at one point. Realisti-
cally, however, we know that a lead bullet will flatten out a lot on
impact, so there is a surface of contact between the two, and its
orientation is vertical. The effect of the force on the bullet is to
stop the horizontal motion of the bullet, and this horizontal ac-
celeration must be produced by a horizontal force. The force is
therefore perpendicular to the surface of contact, and it’s also re-
pulsive (tending to keep the bullet from entering the wall), so it
must be a normal force.

The broadest distinction is that between contact and noncontact
forces, which has been discussed in the previous chapter. Among
the contact forces, we distinguish between those that involve solids
only and those that have to do with fluids, a term used in physics
to include both gases and liquids.

It should not be necessary to memorize this diagram by rote.
It is better to reinforce your memory of this system by calling to
mind your commonsense knowledge of certain ordinary phenomena.
For instance, we know that the gravitational attraction between us
and the planet earth will act even if our feet momentarily leave the
ground, and that although magnets have mass and are affected by
gravity, most objects that have mass are nonmagnetic.

This diagram is meant to be as simple as possible while including
most of the forces we deal with in everyday life. If you were an insect,
you would be much more interested in the force of surface tension,
which allowed you to walk on water. I have not included the nuclear
forces, which are responsible for holding the nuclei of atoms, because
they are not evident in everyday life.

You should not be afraid to invent your own names for types of
forces that do not fit into the diagram. For instance, the force that
holds a piece of tape to the wall has been left off of the tree, and if
you were analyzing a situation involving scotch tape, you would be
absolutely right to refer to it by some commonsense name such as
“sticky force.”

On the other hand, if you are having trouble classifying a certain
force, you should also consider whether it is a force at all. For
instance, if someone asks you to classify the force that the earth has
because of its rotation, you would have great difficulty creating a
place for it on the diagram. That’s because it’s a type of motion,
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i / A model that correctly ex-
plains many properties of friction.
The microscopic bumps and
holes in two surfaces dig into
each other, causing a frictional
force.

not a type of force!

Normal forces

A normal force, FN , is a force that keeps one solid object from
passing through another. “Normal” is simply a fancy word for “per-
pendicular,” meaning that the force is perpendicular to the surface
of contact. Intuitively, it seems the normal force magically adjusts
itself to provide whatever force is needed to keep the objects from
occupying the same space. If your muscles press your hands together
gently, there is a gentle normal force. Press harder, and the normal
force gets stronger. How does the normal force know how strong to
be? The answer is that the harder you jam your hands together,
the more compressed your flesh becomes. Your flesh is acting like
a spring: more force is required to compress it more. The same is
true when you push on a wall. The wall flexes imperceptibly in pro-
portion to your force on it. If you exerted enough force, would it be
possible for two objects to pass through each other? No, typically
the result is simply to strain the objects so much that one of them
breaks.

Gravitational forces

As we’ll discuss in more detail later in the course, a gravitational
force exists between any two things that have mass. In everyday life,
the gravitational force between two cars or two people is negligible,
so the only noticeable gravitational forces are the ones between the
earth and various human-scale objects. We refer to these planet-
earth-induced gravitational forces as weight forces, and as we have
already seen, their magnitude is given by |FW | = mg.

. Solved problem: Weight and mass page 173, problem 26

Static and kinetic friction

If you have pushed a refrigerator across a kitchen floor, you have
felt a certain series of sensations. At first, you gradually increased
your force on the refrigerator, but it didn’t move. Finally, you sup-
plied enough force to unstick the fridge, and there was a sudden jerk
as the fridge started moving. Once the fridge is unstuck, you can
reduce your force significantly and still keep it moving.

While you were gradually increasing your force, the floor’s fric-
tional force on the fridge increased in response. The two forces on
the fridge canceled, and the fridge didn’t accelerate. How did the
floor know how to respond with just the right amount of force? Fig-
ure i shows one possible model of friction that explains this behavior.
(A scientific model is a description that we expect to be incomplete,
approximate, or unrealistic in some ways, but that nevertheless suc-
ceeds in explaining a variety of phenomena.) Figure i/1 shows a
microscopic view of the tiny bumps and holes in the surfaces of the
floor and the refrigerator. The weight of the fridge presses the two
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j / Static friction: the tray doesn’t
slip on the waiter’s fingers.

k / Kinetic friction: the car
skids.

surfaces together, and some of the bumps in one surface will settle
as deeply as possible into some of the holes in the other surface. In
i/2, your leftward force on the fridge has caused it to ride up a little
higher on the bump in the floor labeled with a small arrow. Still
more force is needed to get the fridge over the bump and allow it to
start moving. Of course, this is occurring simultaneously at millions
of places on the two surfaces.

Once you had gotten the fridge moving at constant speed, you
found that you needed to exert less force on it. Since zero total force
is needed to make an object move with constant velocity, the floor’s
rightward frictional force on the fridge has apparently decreased
somewhat, making it easier for you to cancel it out. Our model also
gives a plausible explanation for this fact: as the surfaces slide past
each other, they don’t have time to settle down and mesh with one
another, so there is less friction.

Even though this model is intuitively appealing and fairly suc-
cessful, it should not be taken too seriously, and in some situations
it is misleading. For instance, fancy racing bikes these days are
made with smooth tires that have no tread — contrary to what
we’d expect from our model, this does not cause any decrease in
friction. Machinists know that two very smooth and clean metal
surfaces may stick to each other firmly and be very difficult to slide
apart. This cannot be explained in our model, but makes more
sense in terms of a model in which friction is described as arising
from chemical bonds between the atoms of the two surfaces at their
points of contact: very flat surfaces allow more atoms to come in
contact.

Since friction changes its behavior dramatically once the sur-
faces come unstuck, we define two separate types of frictional forces.
Static friction is friction that occurs between surfaces that are not
slipping over each other. Slipping surfaces experience kinetic fric-
tion. “Kinetic” means having to do with motion. The forces of
static and kinetic friction, notated Fs and Fk, are always parallel to
the surface of contact between the two objects.

self-check B
1. When a baseball player slides in to a base, is the friction static, or
kinetic?

2. A mattress stays on the roof of a slowly accelerating car. Is the
friction static, or kinetic?

3. Does static friction create heat? Kinetic friction? . Answer, p. 273

The maximum possible force of static friction depends on what
kinds of surfaces they are, and also on how hard they are being
pressed together. The approximate mathematical relationships can
be expressed as follows:

Fs,max = µsFN ,
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where µs is a unitless number, called the coefficient of static friction,
which depends on what kinds of surfaces they are. The maximum
force that static friction can supply, µsFN , represents the boundary
between static and kinetic friction. It depends on the normal force,
which is numerically equal to whatever force is pressing the two
surfaces together. In terms of our model, if the two surfaces are
being pressed together more firmly, a greater sideways force will be
required in order to make the irregularities in the surfaces ride up
and over each other.

Note that just because we use an adjective such as “applied” to
refer to a force, that doesn’t mean that there is some special type
of force called the “applied force.” The applied force could be any
type of force, or it could be the sum of more than one force trying
to make an object move.

The force of kinetic friction on each of the two objects is in the
direction that resists the slippage of the surfaces. Its magnitude is
usually well approximated as

Fk = µkFN

where µk is the coefficient of kinetic friction. Kinetic friction is
usually more or less independent of velocity.

l / We choose a coordinate sys-
tem in which the applied force,
i.e., the force trying to move the
objects, is positive. The friction
force is then negative, since it is
in the opposite direction. As you
increase the applied force, the
force of static friction increases to
match it and cancel it out, until the
maximum force of static friction is
surpassed. The surfaces then be-
gin slipping past each other, and
the friction force becomes smaller
in absolute value.

self-check C
Can a frictionless surface exert a normal force? Can a frictional force
exist without a normal force? . Answer, p. 273

If you try to accelerate or decelerate your car too quickly, the
forces between your wheels and the road become too great, and they
begin slipping. This is not good, because kinetic friction is weaker
than static friction, resulting in less control. Also, if this occurs
while you are turning, the car’s handling changes abruptly because
the kinetic friction force is in a different direction than the static
friction force had been: contrary to the car’s direction of motion,
rather than contrary to the forces applied to the tire.
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Most people respond with disbelief when told of the experimen-
tal evidence that both static and kinetic friction are approximately
independent of the amount of surface area in contact. Even after
doing a hands-on exercise with spring scales to show that it is true,
many students are unwilling to believe their own observations, and
insist that bigger tires “give more traction.” In fact, the main rea-
son why you would not want to put small tires on a big heavy car
is that the tires would burst!

Although many people expect that friction would be propor-
tional to surface area, such a proportionality would make predictions
contrary to many everyday observations. A dog’s feet, for example,
have very little surface area in contact with the ground compared
to a human’s feet, and yet we know that a dog can often win a
tug-of-war with a person.

The reason a smaller surface area does not lead to less friction
is that the force between the two surfaces is more concentrated,
causing their bumps and holes to dig into each other more deeply.

self-check D
Find the direction of each of the forces in figure m. . Answer, p. 273

m / 1. The cliff’s normal force on
the climber’s feet. 2. The track’s
static frictional force on the wheel
of the accelerating dragster. 3.
The ball’s normal force on the
bat.

Locomotives example 4
Looking at a picture of a locomotive, n, we notice two obvious
things that are different from an automobile. Where a car typi-
cally has two drive wheels, a locomotive normally has many —
ten in this example. (Some also have smaller, unpowered wheels
in front of and behind the drive wheels, but this example doesn’t.)
Also, cars these days are generally built to be as light as possi-
ble for their size, whereas locomotives are very massive, and no
effort seems to be made to keep their weight low. (The steam
locomotive in the photo is from about 1900, but this is true even
for modern diesel and electric trains.)

The reason locomotives are built to be so heavy is for traction.
The upward normal force of the rails on the wheels, FN , cancels
the downward force of gravity, FW , so ignoring plus and minus
signs, these two forces are equal in absolute value, FN = FW .
Given this amount of normal force, the maximum force of static

Section 5.2 Classification and Behavior of Forces 157



o / Fluid friction depends on
the fluid’s pattern of flow, so it is
more complicated than friction
between solids, and there are
no simple, universally applicable
formulas to calculate it. From
top to bottom: supersonic wind
tunnel, vortex created by a crop
duster, series of vortices created
by a single object, turbulence.

n / Example 4.

friction is Fs = µsFN = µsFW . This static frictional force, of the
rails pushing forward on the wheels, is the only force that can
accelerate the train, pull it uphill, or cancel out the force of air
resistance while cruising at constant speed. The coefficient of
static friction for steel on steel is about 1/4, so no locomotive can
pull with a force greater than about 1/4 of its own weight. If the
engine is capable of supplying more than that amount of force, the
result will be simply to break static friction and spin the wheels.

The reason this is all so different from the situation with a car is
that a car isn’t pulling something else. If you put extra weight in
a car, you improve the traction, but you also increase the inertia
of the car, and make it just as hard to accelerate. In a train, the
inertia is almost all in the cars being pulled, not in the locomotive.

The other fact we have to explain is the large number of driv-
ing wheels. First, we have to realize that increasing the num-
ber of driving wheels neither increases nor decreases the total
amount of static friction, because static friction is independent of
the amount of surface area in contact. (The reason four-wheel-
drive is good in a car is that if one or more of the wheels is slip-
ping on ice or in mud, the other wheels may still have traction.
This isn’t typically an issue for a train, since all the wheels experi-
ence the same conditions.) The advantage of having more driving
wheels on a train is that it allows us to increase the weight of the
locomotive without crushing the rails, or damaging bridges.

Fluid friction
Try to drive a nail into a waterfall and you will be confronted

with the main difference between solid friction and fluid friction.
Fluid friction is purely kinetic; there is no static fluid friction. The
nail in the waterfall may tend to get dragged along by the water
flowing past it, but it does not stick in the water. The same is true
for gases such as air: recall that we are using the word “fluid” to
include both gases and liquids.
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p / What do the golf ball and
the shark have in common? Both
use the same trick to reduce fluid
friction. The dimples on the golf
ball modify the pattern of flow of
the air around it, counterintuitively
reducing friction. Recent studies
have shown that sharks can
accomplish the same thing by
raising, or “bristling,” the scales
on their skin at high speeds.

q / The wheelbases of the
Hummer H3 and the Toyota Prius
are surprisingly similar, differing
by only 10%. The main difference
in shape is that the Hummer is
much taller and wider. It presents
a much greater cross-sectional
area to the wind, and this is the
main reason that it uses about 2.5
times more gas on the freeway.

Unlike kinetic friction between solids, fluid friction increases
rapidly with velocity. It also depends on the shape of the object,
which is why a fighter jet is more streamlined than a Model T. For
objects of the same shape but different sizes, fluid friction typically
scales up with the cross-sectional area of the object, which is one
of the main reasons that an SUV gets worse mileage on the freeway
than a compact car.

Discussion Questions

A A student states that when he tries to push his refrigerator, the
reason it won’t move is because Newton’s third law says there’s an equal
and opposite frictional force pushing back. After all, the static friction force
is equal and opposite to the applied force. How would you convince him
he is wrong?

B Kinetic friction is usually more or less independent of velocity. How-
ever, inexperienced drivers tend to produce a jerk at the last moment of
deceleration when they stop at a stop light. What does this tell you about
the kinetic friction between the brake shoes and the brake drums?

C Some of the following are correct descriptions of types of forces that
could be added on as new branches of the classification tree. Others are
not really types of forces, and still others are not force phenomena at all.
In each case, decide what’s going on, and if appropriate, figure out how
you would incorporate them into the tree.

sticky force makes tape stick to things
opposite force the force that Newton’s third law says relates to ev-

ery force you make
flowing force the force that water carries with it as it flows out of a

hose
surface tension lets insects walk on water
horizontal force a force that is horizontal
motor force the force that a motor makes on the thing it is turning
canceled force a force that is being canceled out by some other

force

5.3 Analysis of Forces
Newton’s first and second laws deal with the total of all the forces
exerted on a specific object, so it is very important to be able to
figure out what forces there are. Once you have focused your atten-
tion on one object and listed the forces on it, it is also helpful to
describe all the corresponding forces that must exist according to
Newton’s third law. We refer to this as “analyzing the forces” in
which the object participates.
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A barge example 5
A barge is being pulled along a canal by teams of horses on the shores. Analyze all the forces in which the
barge participates.

force acting on barge force related to it by Newton’s third law
ropes’ forward normal forces on barge barge’s backward normal force on ropes
water’s backward fluid friction force on barge barge’s forward fluid friction force on water
planet earth’s downward gravitational force
on barge

barge’s upward gravitational force on earth

water’s upward “floating” force on barge barge’s downward “floating” force on water

Here I’ve used the word “floating” force as an example of a sensible invented term for a type of force not
classified on the tree in the previous section. A more formal technical term would be “hydrostatic force.”
Note how the pairs of forces are all structured as “A’s force on B, B’s force on A”: ropes on barge and barge
on ropes; water on barge and barge on water. Because all the forces in the left column are forces acting on
the barge, all the forces in the right column are forces being exerted by the barge, which is why each entry in
the column begins with “barge.”

Often you may be unsure whether you have forgotten one of the
forces. Here are three strategies for checking your list:

1. See what physical result would come from the forces you’ve
found so far. Suppose, for instance, that you’d forgotten the
“floating” force on the barge in the example above. Looking
at the forces you’d found, you would have found that there
was a downward gravitational force on the barge which was
not canceled by any upward force. The barge isn’t supposed
to sink, so you know you need to find a fourth, upward force.

2. Another technique for finding missing forces is simply to go
through the list of all the common types of forces and see if
any of them apply.

3. Make a drawing of the object, and draw a dashed boundary
line around it that separates it from its environment. Look for
points on the boundary where other objects come in contact
with your object. This strategy guarantees that you’ll find
every contact force that acts on the object, although it won’t
help you to find non-contact forces.

The following is another example in which we can profit by check-
ing against our physical intuition for what should be happening.
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Discussion question C.

Rappelling example 6
As shown in the figure below, Cindy is rappelling down a cliff. Her downward motion is at constant speed, and
she takes little hops off of the cliff, as shown by the dashed line. Analyze the forces in which she participates
at a moment when her feet are on the cliff and she is pushing off.

force acting on Cindy force related to it by Newton’s third law
planet earth’s gravitational force on Cindy, ↓ Cindy’s gravitational force on earth, ↑
rope’s frictional force on Cindy (her hand), ↑ Cindy’s frictional force on the rope, ↓
cliff’s normal force on Cindy,→ Cindy’s normal force on the cliff,←

The two vertical forces cancel, which is what they should be doing if she is to go down at a constant rate. The
only horizontal force on her is the cliff’s force, which is not canceled by any other force, and which therefore
will produce an acceleration of Cindy to the right. This makes sense, since she is hopping off. (This solution
is a little oversimplified, because the rope is slanting, so it also applies a small leftward force to Cindy. As she
flies out to the right, the slant of the rope will increase, pulling her back in more strongly.)

I believe that constructing the type of table described in this
section is the best method for beginning students. Most textbooks,
however, prescribe a pictorial way of showing all the forces acting on
an object. Such a picture is called a free-body diagram. It should
not be a big problem if a future physics professor expects you to
be able to draw such diagrams, because the conceptual reasoning
is the same. You simply draw a picture of the object, with arrows
representing the forces that are acting on it. Arrows representing
contact forces are drawn from the point of contact, noncontact forces
from the center of mass. Free-body diagrams do not show the equal
and opposite forces exerted by the object itself.

Discussion Questions
A In the example of the barge going down the canal, I referred to
a “floating” or “hydrostatic” force that keeps the boat from sinking. If you
were adding a new branch on the force-classification tree to represent this
force, where would it go?

B A pool ball is rebounding from the side of the pool table. Analyze
the forces in which the ball participates during the short time when it is in
contact with the side of the table.

C The earth’s gravitational force on you, i.e., your weight, is always
equal to mg, where m is your mass. So why can you get a shovel to go
deeper into the ground by jumping onto it? Just because you’re jumping,
that doesn’t mean your mass or weight is any greater, does it?
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5.4 Transmission of Forces by Low-Mass
Objects

You’re walking your dog. The dog wants to go faster than you do,
and the leash is taut. Does Newton’s third law guarantee that your
force on your end of the leash is equal and opposite to the dog’s
force on its end? If they’re not exactly equal, is there any reason
why they should be approximately equal?

If there was no leash between you, and you were in direct contact
with the dog, then Newton’s third law would apply, but Newton’s
third law cannot relate your force on the leash to the dog’s force
on the leash, because that would involve three separate objects.
Newton’s third law only says that your force on the leash is equal
and opposite to the leash’s force on you,

FyL = −FLy,

and that the dog’s force on the leash is equal and opposite to its
force on the dog

FdL = −FLd.

Still, we have a strong intuitive expectation that whatever force we
make on our end of the leash is transmitted to the dog, and vice-
versa. We can analyze the situation by concentrating on the forces
that act on the leash, FdL and FyL. According to Newton’s second
law, these relate to the leash’s mass and acceleration:

FdL + FyL = mLaL.

The leash is far less massive then any of the other objects involved,
and if mL is very small, then apparently the total force on the leash
is also very small, FdL + FyL ≈ 0, and therefore

FdL ≈ −FyL .

Thus even though Newton’s third law does not apply directly to
these two forces, we can approximate the low-mass leash as if it was
not intervening between you and the dog. It’s at least approximately
as if you and the dog were acting directly on each other, in which
case Newton’s third law would have applied.

In general, low-mass objects can be treated approximately as if
they simply transmitted forces from one object to another. This can
be true for strings, ropes, and cords, and also for rigid objects such
as rods and sticks.

If you look at a piece of string under a magnifying glass as you
pull on the ends more and more strongly, you will see the fibers
straightening and becoming taut. Different parts of the string are
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s / The Golden Gate Bridge’s
roadway is held up by the tension
in the vertical cables.

r / If we imagine dividing a taut rope up into small segments, then
any segment has forces pulling outward on it at each end. If the rope
is of negligible mass, then all the forces equal +T or −T , where T , the
tension, is a single number.

apparently exerting forces on each other. For instance, if we think of
the two halves of the string as two objects, then each half is exerting
a force on the other half. If we imagine the string as consisting
of many small parts, then each segment is transmitting a force to
the next segment, and if the string has very little mass, then all
the forces are equal in magnitude. We refer to the magnitude of
the forces as the tension in the string, T . Although the tension
is measured in units of Newtons, it is not itself a force. There are
many forces within the string, some in one direction and some in the
other direction, and their magnitudes are only approximately equal.
The concept of tension only makes sense as a general, approximate
statement of how big all the forces are.

If a rope goes over a pulley or around some other object, then the
tension throughout the rope is approximately equal so long as there
is not too much friction. A rod or stick can be treated in much the
same way as a string, but it is possible to have either compression
or tension.

Since tension is not a type of force, the force exerted by a rope
on some other object must be of some definite type such as static
friction, kinetic friction, or a normal force. If you hold your dog’s
leash with your hand through the loop, then the force exerted by the
leash on your hand is a normal force: it is the force that keeps the
leash from occupying the same space as your hand. If you grasp a
plain end of a rope, then the force between the rope and your hand
is a frictional force.

A more complex example of transmission of forces is the way
a car accelerates. Many people would describe the car’s engine as
making the force that accelerates the car, but the engine is part of
the car, so that’s impossible: objects can’t make forces on them-
selves. What really happens is that the engine’s force is transmitted
through the transmission to the axles, then through the tires to the
road. By Newton’s third law, there will thus be a forward force from
the road on the tires, which accelerates the car.

Discussion Question

A When you step on the gas pedal, is your foot’s force being transmitted
in the sense of the word used in this section?
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5.5 Objects Under Strain
A string lengthens slightly when you stretch it. Similarly, we have
already discussed how an apparently rigid object such as a wall is
actually flexing when it participates in a normal force. In other
cases, the effect is more obvious. A spring or a rubber band visibly
elongates when stretched.

Common to all these examples is a change in shape of some kind:
lengthening, bending, compressing, etc. The change in shape can
be measured by picking some part of the object and measuring its
position, x. For concreteness, let’s imagine a spring with one end
attached to a wall. When no force is exerted, the unfixed end of the
spring is at some position xo. If a force acts at the unfixed end, its
position will change to some new value of x. The more force, the
greater the departure of x from xo.

t / Defining the quantities F , x ,
and xo in Hooke’s law.

Back in Newton’s time, experiments like this were considered
cutting-edge research, and his contemporary Hooke is remembered
today for doing them and for coming up with a simple mathematical
generalization called Hooke’s law:

F ≈ k(x− xo) . [force required to stretch a spring; valid

for small forces only]

Here k is a constant, called the spring constant, that depends on
how stiff the object is. If too much force is applied, the spring
exhibits more complicated behavior, so the equation is only a good
approximation if the force is sufficiently small. Usually when the
force is so large that Hooke’s law is a bad approximation, the force
ends up permanently bending or breaking the spring.

Although Hooke’s law may seem like a piece of trivia about
springs, it is actually far more important than that, because all
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solid objects exert Hooke’s-law behavior over some range of suffi-
ciently small forces. For example, if you push down on the hood of
a car, it dips by an amount that is directly proportional to the force.
(But the car’s behavior would not be as mathematically simple if
you dropped a boulder on the hood!)

. Solved problem: Combining springs page 171, problem 14

. Solved problem: Young’s modulus page 171, problem 16

Discussion Question

A A car is connected to its axles through big, stiff springs called shock
absorbers, or “shocks.” Although we’ve discussed Hooke’s law above only
in the case of stretching a spring, a car’s shocks are continually going
through both stretching and compression. In this situation, how would
you interpret the positive and negative signs in Hooke’s law?

5.6 Simple Machines: the Pulley
Even the most complex machines, such as cars or pianos, are built
out of certain basic units called simple machines. The following are
some of the main functions of simple machines:

transmitting a force: The chain on a bicycle transmits a force
from the crank set to the rear wheel.

changing the direction of a force: If you push down on a see-
saw, the other end goes up.

changing the speed and precision of motion: When you make
the “come here” motion, your biceps only moves a couple of
centimeters where it attaches to your forearm, but your arm
moves much farther and more rapidly.

changing the amount of force: A lever or pulley can be used
to increase or decrease the amount of force.

You are now prepared to understand one-dimensional simple ma-
chines, of which the pulley is the main example.

u / Example 7.

A pulley example 7
. Farmer Bill says this pulley arrangement doubles the force of
his tractor. Is he just a dumb hayseed, or does he know what he’s
doing?
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. To use Newton’s first law, we need to pick an object and con-
sider the sum of the forces on it. Since our goal is to relate the
tension in the part of the cable attached to the stump to the ten-
sion in the part attached to the tractor, we should pick an object
to which both those cables are attached, i.e., the pulley itself. As
discussed in section 5.4, the tension in a string or cable remains
approximately constant as it passes around a pulley, provided that
there is not too much friction. There are therefore two leftward
forces acting on the pulley, each equal to the force exerted by the
tractor. Since the acceleration of the pulley is essentially zero, the
forces on it must be canceling out, so the rightward force of the
pulley-stump cable on the pulley must be double the force exerted
by the tractor. Yes, Farmer Bill knows what he’s talking about.
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Summary
Selected Vocabulary
repulsive . . . . . describes a force that tends to push the two

participating objects apart
attractive . . . . describes a force that tends to pull the two

participating objects together
oblique . . . . . . describes a force that acts at some other angle,

one that is not a direct repulsion or attraction
normal force . . . the force that keeps two objects from occupy-

ing the same space
static friction . . a friction force between surfaces that are not

slipping past each other
kinetic friction . a friction force between surfaces that are slip-

ping past each other
fluid . . . . . . . . a gas or a liquid
fluid friction . . . a friction force in which at least one of the

object is is a fluid
spring constant . the constant of proportionality between force

and elongation of a spring or other object un-
der strain

Notation
FN . . . . . . . . . a normal force
Fs . . . . . . . . . a static frictional force
Fk . . . . . . . . . a kinetic frictional force
µs . . . . . . . . . the coefficient of static friction; the constant of

proportionality between the maximum static
frictional force and the normal force; depends
on what types of surfaces are involved

µk . . . . . . . . . the coefficient of kinetic friction; the constant
of proportionality between the kinetic fric-
tional force and the normal force; depends on
what types of surfaces are involved

k . . . . . . . . . . the spring constant; the constant of propor-
tionality between the force exerted on an ob-
ject and the amount by which the object is
lengthened or compressed

Summary

Newton’s third law states that forces occur in equal and opposite
pairs. If object A exerts a force on object B, then object B must
simultaneously be exerting an equal and opposite force on object A.
Each instance of Newton’s third law involves exactly two objects,
and exactly two forces, which are of the same type.

There are two systems for classifying forces. We are presently
using the more practical but less fundamental one. In this system,
forces are classified by whether they are repulsive, attractive, or
oblique; whether they are contact or noncontact forces; and whether
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the two objects involved are solids or fluids.

Static friction adjusts itself to match the force that is trying to
make the surfaces slide past each other, until the maximum value is
reached,

Fs,max = µsFN .

Once this force is exceeded, the surfaces slip past one another, and
kinetic friction applies,

Fk = µkFN .

Both types of frictional force are nearly independent of surface area,
and kinetic friction is usually approximately independent of the
speed at which the surfaces are slipping. The direction of the force
is in the direction that would tend to stop or prevent slipping.

A good first step in applying Newton’s laws of motion to any
physical situation is to pick an object of interest, and then to list
all the forces acting on that object. We classify each force by its
type, and find its Newton’s-third-law partner, which is exerted by
the object on some other object.

When two objects are connected by a third low-mass object,
their forces are transmitted to each other nearly unchanged.

Objects under strain always obey Hooke’s law to a good approx-
imation, as long as the force is small. Hooke’s law states that the
stretching or compression of the object is proportional to the force
exerted on it,

F ≈ k(x− xo) .
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Problem 1.

Problem 6.

Problem 9.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 A little old lady and a pro football player collide head-on.
Compare their forces on each other, and compare their accelerations.
Explain.

2 The earth is attracted to an object with a force equal and
opposite to the force of the earth on the object. If this is true,
why is it that when you drop an object, the earth does not have an
acceleration equal and opposite to that of the object?

3 When you stand still, there are two forces acting on you,
the force of gravity (your weight) and the normal force of the floor
pushing up on your feet. Are these forces equal and opposite? Does
Newton’s third law relate them to each other? Explain.

In problems 4-8, analyze the forces using a table in the format shown
in section 5.3. Analyze the forces in which the italicized object par-
ticipates.

4 A magnet is stuck underneath a parked car. (See instructions
above.)

5 Analyze two examples of objects at rest relative to the earth
that are being kept from falling by forces other than the normal
force. Do not use objects in outer space, and do not duplicate
problem 4 or 8. (See instructions above.)

6 A person is rowing a boat, with her feet braced. She is doing
the part of the stroke that propels the boat, with the ends of the
oars in the water (not the part where the oars are out of the water).
(See instructions above.)

7 A farmer is in a stall with a cow when the cow decides to press
him against the wall, pinning him with his feet off the ground. An-
alyze the forces in which the farmer participates. (See instructions
above.)

8 A propeller plane is cruising east at constant speed and alti-
tude. (See instructions above.)

9 Today’s tallest buildings are really not that much taller than
the tallest buildings of the 1940’s. One big problem with making an
even taller skyscraper is that every elevator needs its own shaft run-
ning the whole height of the building. So many elevators are needed
to serve the building’s thousands of occupants that the elevator
shafts start taking up too much of the space within the building.
An alternative is to have elevators that can move both horizontally
and vertically: with such a design, many elevator cars can share a
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Problem 10.

few shafts, and they don’t get in each other’s way too much because
they can detour around each other. In this design, it becomes im-
possible to hang the cars from cables, so they would instead have to
ride on rails which they grab onto with wheels. Friction would keep
them from slipping. The figure shows such a frictional elevator in
its vertical travel mode. (The wheels on the bottom are for when it
needs to switch to horizontal motion.)
(a) If the coefficient of static friction between rubber and steel is
µs, and the maximum mass of the car plus its passengers is M ,
how much force must there be pressing each wheel against the rail
in order to keep the car from slipping? (Assume the car is not
accelerating.)

√

(b) Show that your result has physically reasonable behavior with
respect to µs. In other words, if there was less friction, would the
wheels need to be pressed more firmly or less firmly? Does your
equation behave that way?

10 Unequal masses M and m are suspended from a pulley as
shown in the figure.
(a) Analyze the forces in which mass m participates, using a table
the format shown in section 5.3. [The forces in which the other mass
participates will of course be similar, but not numerically the same.]
(b) Find the magnitude of the accelerations of the two masses.
[Hints: (1) Pick a coordinate system, and use positive and nega-
tive signs consistently to indicate the directions of the forces and
accelerations. (2) The two accelerations of the two masses have to
be equal in magnitude but of opposite signs, since one side eats up
rope at the same rate at which the other side pays it out. (3) You
need to apply Newton’s second law twice, once to each mass, and
then solve the two equations for the unknowns: the acceleration, a,
and the tension in the rope, T .]
(c) Many people expect that in the special case of M = m, the two
masses will naturally settle down to an equilibrium position side by
side. Based on your answer from part b, is this correct?
(d) Find the tension in the rope, T .
(e) Interpret your equation from part d in the special case where one
of the masses is zero. Here “interpret” means to figure out what hap-
pens mathematically, figure out what should happen physically, and
connect the two.

11 A tugboat of mass m pulls a ship of mass M , accelerating it.
The speeds are low enough that you can ignore fluid friction acting
on their hulls, although there will of course need to be fluid friction
acting on the tug’s propellers.
(a) Analyze the forces in which the tugboat participates, using a
table in the format shown in section 5.3. Don’t worry about vertical
forces.
(b) Do the same for the ship.
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Problem 13.

Problem 14.

Problem 17.

(c) Assume now that water friction on the two vessels’ hulls is neg-
ligible. If the force acting on the tug’s propeller is F , what is the
tension, T , in the cable connecting the two ships? [Hint: Write
down two equations, one for Newton’s second law applied to each
object. Solve these for the two unknowns T and a.]

√

(d) Interpret your answer in the special cases of M = 0 and M =∞.

12 Someone tells you she knows of a certain type of Central
American earthworm whose skin, when rubbed on polished dia-
mond, has µk > µs. Why is this not just empirically unlikely but
logically suspect?

13 In the system shown in the figure, the pulleys on the left and
right are fixed, but the pulley in the center can move to the left or
right. The two masses are identical. Show that the mass on the left
will have an upward acceleration equal to g/5. Assume all the ropes
and pulleys are massless and frictionless.

14 The figure shows two different ways of combining a pair of
identical springs, each with spring constant k. We refer to the top
setup as parallel, and the bottom one as a series arrangement.
(a) For the parallel arrangement, analyze the forces acting on the
connector piece on the left, and then use this analysis to determine
the equivalent spring constant of the whole setup. Explain whether
the combined spring constant should be interpreted as being stiffer
or less stiff.
(b) For the series arrangement, analyze the forces acting on each
spring and figure out the same things. . Solution, p. 279

15 Generalize the results of problem 14 to the case where the
two spring constants are unequal.

16 (a) Using the solution of problem 14, which is given in the
back of the book, predict how the spring constant of a fiber will
depend on its length and cross-sectional area.
(b) The constant of proportionality is called the Young’s modulus,
E, and typical values of the Young’s modulus are about 1010 to
1011. What units would the Young’s modulus have in the SI (meter-
kilogram-second) system? . Solution, p. 280

17 This problem depends on the results of problems 14 and
16, whose solutions are in the back of the book. When atoms form
chemical bonds, it makes sense to talk about the spring constant of
the bond as a measure of how “stiff” it is. Of course, there aren’t
really little springs — this is just a mechanical model. The purpose
of this problem is to estimate the spring constant, k, for a single
bond in a typical piece of solid matter. Suppose we have a fiber,
like a hair or a piece of fishing line, and imagine for simplicity that
it is made of atoms of a single element stacked in a cubical manner,
as shown in the figure, with a center-to-center spacing b. A typical
value for b would be about 10−10 m.
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Problem 19.

(a) Find an equation for k in terms of b, and in terms of the Young’s
modulus, E, defined in problem 16 and its solution.
(b) Estimate k using the numerical data given in problem 16.
(c) Suppose you could grab one of the atoms in a diatomic molecule
like H2 or O2, and let the other atom hang vertically below it. Does
the bond stretch by any appreciable fraction due to gravity?

18 In each case, identify the force that causes the acceleration,
and give its Newton’s-third-law partner. Describe the effect of the
partner force. (a) A swimmer speeds up. (b) A golfer hits the ball
off of the tee. (c) An archer fires an arrow. (d) A locomotive slows
down. . Solution, p. 280

19 Ginny has a plan. She is going to ride her sled while her dog
Foo pulls her, and she holds on to his leash. However, Ginny hasn’t
taken physics, so there may be a problem: she may slide right off
the sled when Foo starts pulling.
(a) Analyze all the forces in which Ginny participates, making a
table as in section 5.3.
(b) Analyze all the forces in which the sled participates.
(c) The sled has mass m, and Ginny has mass M . The coefficient
of static friction between the sled and the snow is µ1, and µ2 is
the corresponding quantity for static friction between the sled and
her snow pants. Ginny must have a certain minimum mass so that
she will not slip off the sled. Find this in terms of the other three
variables.

√

(d) Interpreting your equation from part c, under what conditions
will there be no physically realistic solution for M? Discuss what
this means physically.

20 Example 2 on page 148 involves a person pushing a box up a
hill. The incorrect answer describes three forces. For each of these
three forces, give the force that it is related to by Newton’s third
law, and state the type of force. . Solution, p. 280

21 Example 7 on page 165 describes a force-doubling setup
involving a pulley. Make up a more complicated arrangement, using
more than one pulley, that would multiply the force by a factor
greater than two.

22 Pick up a heavy object such as a backpack or a chair, and
stand on a bathroom scale. Shake the object up and down. What
do you observe? Interpret your observations in terms of Newton’s
third law.

23 A cop investigating the scene of an accident measures the
length L of a car’s skid marks in order to find out its speed v at
the beginning of the skid. Express v in terms of L and any other
relevant variables.

√

24 The following reasoning leads to an apparent paradox; explain
what’s wrong with the logic. A baseball player hits a ball. The ball
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and the bat spend a fraction of a second in contact. During that
time they’re moving together, so their accelerations must be equal.
Newton’s third law says that their forces on each other are also
equal. But a = F/m, so how can this be, since their masses are
unequal? (Note that the paradox isn’t resolved by considering the
force of the batter’s hands on the bat. Not only is this force very
small compared to the ball-bat force, but the batter could have just
thrown the bat at the ball.)

25 This problem has been deleted.

26 (a) Compare the mass of a one-liter water bottle on earth,
on the moon, and in interstellar space. . Solution, p. 280
(b) Do the same for its weight.

27 An ice skater builds up some speed, and then coasts across
the ice passively in a straight line. (a) Analyze the forces.
(b) If his initial speed is v, and the coefficient of kinetic friction is µk,
find the maximum theoretical distance he can glide before coming
to a stop. Ignore air resistance.

√

(c) Show that your answer to part b has the right units.
(d) Show that your answer to part b depends on the variables in a
way that makes sense physically.
(e) Evaluate your answer numerically for µk = 0.0046, and a world-
record speed of 14.58 m/s. (The coefficient of friction was measured
by De Koning et al., using special skates worn by real speed skaters.)√

(f) Comment on whether your answer in part e seems realistic. If it
doesn’t, suggest possible reasons why.
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Motion in Three
Dimensions





176



Chapter 6

Newton’s Laws in Three
Dimensions

6.1 Forces Have No Perpendicular Effects
Suppose you could shoot a rifle and arrange for a second bullet to
be dropped from the same height at the exact moment when the
first left the barrel. Which would hit the ground first? Nearly
everyone expects that the dropped bullet will reach the dirt first,
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and Aristotle would have agreed. Aristotle would have described it
like this. The shot bullet receives some forced motion from the gun.
It travels forward for a split second, slowing down rapidly because
there is no longer any force to make it continue in motion. Once
it is done with its forced motion, it changes to natural motion, i.e.
falling straight down. While the shot bullet is slowing down, the
dropped bullet gets on with the business of falling, so according to
Aristotle it will hit the ground first.

a / A bullet is shot from a gun, and another bullet is simultaneously dropped from the same height. 1.
Aristotelian physics says that the horizontal motion of the shot bullet delays the onset of falling, so the dropped
bullet hits the ground first. 2. Newtonian physics says the two bullets have the same vertical motion, regardless
of their different horizontal motions.

Luckily, nature isn’t as complicated as Aristotle thought! To
convince yourself that Aristotle’s ideas were wrong and needlessly
complex, stand up now and try this experiment. Take your keys
out of your pocket, and begin walking briskly forward. Without
speeding up or slowing down, release your keys and let them fall
while you continue walking at the same pace.

You have found that your keys hit the ground right next to your
feet. Their horizontal motion never slowed down at all, and the
whole time they were dropping, they were right next to you. The
horizontal motion and the vertical motion happen at the same time,
and they are independent of each other. Your experiment proves
that the horizontal motion is unaffected by the vertical motion, but
it’s also true that the vertical motion is not changed in any way by
the horizontal motion. The keys take exactly the same amount of
time to get to the ground as they would have if you simply dropped
them, and the same is true of the bullets: both bullets hit the ground
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simultaneously.

These have been our first examples of motion in more than one
dimension, and they illustrate the most important new idea that
is required to understand the three-dimensional generalization of
Newtonian physics:

Forces have no perpendicular effects.
When a force acts on an object, it has no effect on the part of the
object’s motion that is perpendicular to the force.

In the examples above, the vertical force of gravity had no effect
on the horizontal motions of the objects. These were examples of
projectile motion, which interested people like Galileo because of
its military applications. The principle is more general than that,
however. For instance, if a rolling ball is initially heading straight
for a wall, but a steady wind begins blowing from the side, the ball
does not take any longer to get to the wall. In the case of projectile
motion, the force involved is gravity, so we can say more specifically
that the vertical acceleration is 9.8 m/s2, regardless of the horizontal
motion.

self-check A
In the example of the ball being blown sideways, why doesn’t the ball
take longer to get there, since it has to travel a greater distance? .

Answer, p. 274

Relationship to relative motion

These concepts are directly related to the idea that motion is rel-
ative. Galileo’s opponents argued that the earth could not possibly
be rotating as he claimed, because then if you jumped straight up in
the air you wouldn’t be able to come down in the same place. Their
argument was based on their incorrect Aristotelian assumption that
once the force of gravity began to act on you and bring you back
down, your horizontal motion would stop. In the correct Newtonian
theory, the earth’s downward gravitational force is acting before,
during, and after your jump, but has no effect on your motion in
the perpendicular (horizontal) direction.

If Aristotle had been correct, then we would have a handy way
to determine absolute motion and absolute rest: jump straight up
in the air, and if you land back where you started, the surface from
which you jumped must have been in a state of rest. In reality, this
test gives the same result as long as the surface under you is an
inertial frame. If you try this in a jet plane, you land back on the
same spot on the deck from which you started, regardless of whether
the plane is flying at 500 miles per hour or parked on the runway.
The method would in fact only be good for detecting whether the
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c / The shadow on the wall
shows the ball’s y motion, the
shadow on the floor its x motion.

plane was accelerating.

Discussion Questions

A The following is an incorrect explanation of a fact about target
shooting:

“Shooting a high-powered rifle with a high muzzle velocity is different from
shooting a less powerful gun. With a less powerful gun, you have to aim
quite a bit above your target, but with a more powerful one you don’t have
to aim so high because the bullet doesn’t drop as fast.”

What is the correct explanation?

B You have thrown a rock, and it is flying through the air in an arc. If
the earth’s gravitational force on it is always straight down, why doesn’t it
just go straight down once it leaves your hand?

C Consider the example of the bullet that is dropped at the same
moment another bullet is fired from a gun. What would the motion of the
two bullets look like to a jet pilot flying alongside in the same direction as
the shot bullet and at the same horizontal speed?

6.2 Coordinates and Components
’Cause we’re all
Bold as love,
Just ask the axis.

Jimi Hendrix

How do we convert these ideas into mathematics? Figure b shows
a good way of connecting the intuitive ideas to the numbers. In one
dimension, we impose a number line with an x coordinate on a
certain stretch of space. In two dimensions, we imagine a grid of
squares which we label with x and y values, as shown in figure b.

But of course motion doesn’t really occur in a series of discrete
hops like in chess or checkers. The figure on the left shows a way
of conceptualizing the smooth variation of the x and y coordinates.
The ball’s shadow on the wall moves along a line, and we describe
its position with a single coordinate, y, its height above the floor.
The wall shadow has a constant acceleration of -9.8 m/s2. A shadow
on the floor, made by a second light source, also moves along a line,
and we describe its motion with an x coordinate, measured from the
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b / This object experiences a force that pulls it down toward the
bottom of the page. In each equal time interval, it moves three units to
the right. At the same time, its vertical motion is making a simple pattern
of +1, 0, −1, −2, −3, −4, . . . units. Its motion can be described by an x
coordinate that has zero acceleration and a y coordinate with constant
acceleration. The arrows labeled x and y serve to explain that we are
defining increas- ing x to the right and increasing y as upward.

wall.

The velocity of the floor shadow is referred to as the x component
of the velocity, written vx. Similarly we can notate the acceleration
of the floor shadow as ax. Since vx is constant, ax is zero.

Similarly, the velocity of the wall shadow is called vy, its accel-
eration ay. This example has ay = −9.8 m/s2.

Because the earth’s gravitational force on the ball is acting along
the y axis, we say that the force has a negative y component, Fy,
but Fx = Fz = 0.

The general idea is that we imagine two observers, each of whom
perceives the entire universe as if it was flattened down to a single
line. The y-observer, for instance, perceives y, vy, and ay, and will
infer that there is a force, Fy, acting downward on the ball. That
is, a y component means the aspect of a physical phenomenon, such
as velocity, acceleration, or force, that is observable to someone who
can only see motion along the y axis.

All of this can easily be generalized to three dimensions. In the
example above, there could be a z-observer who only sees motion
toward or away from the back wall of the room.
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d / Example 1.

A car going over a cliff example 1
. The police find a car at a distance w = 20 m from the base of a
cliff of height h = 100 m. How fast was the car going when it went
over the edge? Solve the problem symbolically first, then plug in
the numbers.

. Let’s choose y pointing up and x pointing away from the cliff.
The car’s vertical motion was independent of its horizontal mo-
tion, so we know it had a constant vertical acceleration of a =
−g = −9.8 m/s2. The time it spent in the air is therefore related
to the vertical distance it fell by the constant-acceleration equa-
tion

∆y =
1
2

ay∆t2 ,

or

−h =
1
2

(−g)∆t2 .

Solving for ∆t gives

∆t =

√
2h
g

.

Since the vertical force had no effect on the car’s horizontal mo-
tion, it had ax = 0, i.e., constant horizontal velocity. We can apply
the constant-velocity equation

vx =
∆x
∆t

,

i.e.,

vx =
w
∆t

.

We now substitute for ∆t to find

vx = w/

√
2h
g

,

which simplifies to

vx = w
√

g
2h

.

Plugging in numbers, we find that the car’s speed when it went
over the edge was 4 m/s, or about 10 mi/hr.
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e / A parabola can be defined as
the shape made by cutting a cone
parallel to its side. A parabola is
also the graph of an equation of
the form y ∝ x2.

f / Each water droplet follows
a parabola. The faster drops’
parabolas are bigger.

Projectiles move along parabolas.

What type of mathematical curve does a projectile follow through
space? To find out, we must relate x to y, eliminating t. The rea-
soning is very similar to that used in the example above. Arbitrarily
choosing x = y = t = 0 to be at the top of the arc, we conveniently
have x = ∆x, y = ∆y, and t = ∆t, so

y =
1

2
ayt

2 (ay < 0)

x = vxt

We solve the second equation for t = x/vx and eliminate t in the
first equation:

y =
1

2
ay

(
x

vx

)2

.

Since everything in this equation is a constant except for x and y,
we conclude that y is proportional to the square of x. As you may
or may not recall from a math class, y ∝ x2 describes a parabola.

. Solved problem: A cannon page 186, problem 5

Discussion Question

A At the beginning of this section I represented the motion of a projec-
tile on graph paper, breaking its motion into equal time intervals. Suppose
instead that there is no force on the object at all. It obeys Newton’s first law
and continues without changing its state of motion. What would the corre-
sponding graph-paper diagram look like? If the time interval represented
by each arrow was 1 second, how would you relate the graph-paper dia-
gram to the velocity components vx and vy ?

B Make up several different coordinate systems oriented in different
ways, and describe the ax and ay of a falling object in each one.

6.3 Newton’s Laws In Three Dimensions
It is now fairly straightforward to extend Newton’s laws to three
dimensions:

Newton’s first law
If all three components of the total force on an object are zero,
then it will continue in the same state of motion.

Newton’s second law
The components of an object’s acceleration are predicted by
the equations

ax = Fx,total/m ,

ay = Fy,total/m , and

az = Fz,total/m .

Newton’s third law
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g / Example 2.

If two objects A and B interact via forces, then the compo-
nents of their forces on each other are equal and opposite:

FA on B,x = −FB on A,x ,

FA on B,y = −FB on A,y , and

FA on B,z = −FB on A,z .

Forces in perpendicular directions on the same objectexample 2
. An object is initially at rest. Two constant forces begin acting on
it, and continue acting on it for a while. As suggested by the two
arrows, the forces are perpendicular, and the rightward force is
stronger. What happens?

. Aristotle believed, and many students still do, that only one force
can “give orders” to an object at one time. They therefore think
that the object will begin speeding up and moving in the direction
of the stronger force. In fact the object will move along a diagonal.
In the example shown in the figure, the object will respond to the
large rightward force with a large acceleration component to the
right, and the small upward force will give it a small acceleration
component upward. The stronger force does not overwhelm the
weaker force, or have any effect on the upward motion at all. The
force components simply add together:

Fx ,total = F1,x +��
�*0

F2,x

Fy ,total =
�
��>

0
F1,y + F2,y

Discussion Question

A The figure shows two trajectories, made by splicing together lines
and circular arcs, which are unphysical for an object that is only being
acted on by gravity. Prove that they are impossible based on Newton’s
laws.
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Summary
Selected Vocabulary
component . . . . the part of a velocity, acceleration, or force

that would be perceptible to an observer who
could only see the universe projected along a
certain one-dimensional axis

parabola . . . . . the mathematical curve whose graph has y
proportional to x2

Notation
x, y, z . . . . . . an object’s positions along the x, y, and z axes
vx, vy, vz . . . . . the x, y, and z components of an object’s ve-

locity; the rates of change of the object’s x, y,
and z coordinates

ax, ay, az . . . . . the x, y, and z components of an object’s ac-
celeration; the rates of change of vx, vy, and
vz

Summary

A force does not produce any effect on the motion of an object
in a perpendicular direction. The most important application of
this principle is that the horizontal motion of a projectile has zero
acceleration, while the vertical motion has an acceleration equal to g.
That is, an object’s horizontal and vertical motions are independent.
The arc of a projectile is a parabola.

Motion in three dimensions is measured using three coordinates,
x, y, and z. Each of these coordinates has its own corresponding
velocity and acceleration. We say that the velocity and acceleration
both have x, y, and z components

Newton’s second law is readily extended to three dimensions by
rewriting it as three equations predicting the three components of
the acceleration,

ax = Fx,total/m ,

ay = Fy,total/m ,

az = Fz,total/m ,

and likewise for the first and third laws.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 (a) A ball is thrown straight up with velocity v. Find an
equation for the height to which it rises.

√

(b) Generalize your equation for a ball thrown at an angle θ above
horizontal, in which case its initial velocity components are vx =
v cos θ and vy = v sin θ.

√

2 At the 2010 Salinas Lettuce Festival Parade, the Lettuce
Queen drops her bouquet while riding on a float moving toward the
right. Sketch the shape of its trajectory in her frame of reference,
and compare with the shape seen by one of her admirers standing
on the sidewalk.

3 Two daredevils, Wendy and Bill, go over Niagara Falls. Wendy
sits in an inner tube, and lets the 30 km/hr velocity of the river throw
her out horizontally over the falls. Bill paddles a kayak, adding an
extra 10 km/hr to his velocity. They go over the edge of the falls
at the same moment, side by side. Ignore air friction. Explain your
reasoning.
(a) Who hits the bottom first?
(b) What is the horizontal component of Wendy’s velocity on im-
pact?
(c) What is the horizontal component of Bill’s velocity on impact?
(d) Who is going faster on impact?

4 A baseball pitcher throws a pitch clocked at vx=73.3 mi/h.
He throws horizontally. By what amount, d, does the ball drop by
the time it reaches home plate, L=60.0 ft away?
(a) First find a symbolic answer in terms of L, vx, and g.

√

(b) Plug in and find a numerical answer. Express your answer in
units of ft. (Note: 1 ft=12 in, 1 mi=5280 ft, and 1 in=2.54 cm)√

Problem 4.

5 A cannon standing on a flat field fires a cannonball with a
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muzzle velocity v, at an angle θ above horizontal. The cannonball
thus initially has velocity components vx = v cos θ and vy = v sin θ.
(a) Show that the cannon’s range (horizontal distance to where the
cannonball falls) is given by the equation R = (2v2/g) sin θ cos θ .
(b) Interpret your equation in the cases of θ = 0 and θ = 90 ◦.

. Solution, p. 281

6 Assuming the result of problem 5 for the range of a projectile,
R = (2v2/g) sin θ cos θ, show that the maximum range is for θ = 45 ◦.∫
7 Two cars go over the same bump in the road, Maria’s Maserati
at 25 miles per hour and Park’s Porsche at 37. How many times
greater is the vertical acceleration of the Porsche? Hint: Remember
that acceleration depends both on how much the velocity changes
and on how much time it takes to change.

√
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a / Vectors are used in aerial nav-
igation.

Chapter 7

Vectors

7.1 Vector Notation
The idea of components freed us from the confines of one-dimensional
physics, but the component notation can be unwieldy, since every
one-dimensional equation has to be written as a set of three separate
equations in the three-dimensional case. Newton was stuck with the
component notation until the day he died, but eventually someone
sufficiently lazy and clever figured out a way of abbreviating three
equations as one.

(a)
−→
F A on B = −

−→
F B on A stands for

FA on B,x = −FB on A,x

FA on B,y = −FB on A,y

FA on B,z = −FB on A,z

(b)
−→
F total =

−→
F 1 +

−→
F 2 + . . . stands for

Ftotal,x = F1,x + F2,x + . . .
Ftotal,y = F1,y + F2,y + . . .
Ftotal,z = F1,z + F2,z + . . .

(c) −→a = ∆−→v
∆t stands for

ax = ∆vx/∆t
ay = ∆vy/∆t
az = ∆vz/∆t

Example (a) shows both ways of writing Newton’s third law. Which
would you rather write?

The idea is that each of the algebra symbols with an arrow writ-
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ten on top, called a vector, is actually an abbreviation for three
different numbers, the x, y, and z components. The three compo-
nents are referred to as the components of the vector, e.g., Fx is the

x component of the vector
−→
F . The notation with an arrow on top

is good for handwritten equations, but is unattractive in a printed
book, so books use boldface, F, to represent vectors. After this
point, I’ll use boldface for vectors throughout this book.

In general, the vector notation is useful for any quantity that
has both an amount and a direction in space. Even when you are
not going to write any actual vector notation, the concept itself is a
useful one. We say that force and velocity, for example, are vectors.
A quantity that has no direction in space, such as mass or time,
is called a scalar. The amount of a vector quantity is called its
magnitude. The notation for the magnitude of a vector A is |A|,
like the absolute value sign used with scalars.

Often, as in example (b), we wish to use the vector notation to
represent adding up all the x components to get a total x component,
etc. The plus sign is used between two vectors to indicate this type
of component-by-component addition. Of course, vectors are really
triplets of numbers, not numbers, so this is not the same as the use
of the plus sign with individual numbers. But since we don’t want to
have to invent new words and symbols for this operation on vectors,
we use the same old plus sign, and the same old addition-related
words like “add,” “sum,” and “total.” Combining vectors this way
is called vector addition.

Similarly, the minus sign in example (a) was used to indicate
negating each of the vector’s three components individually. The
equals sign is used to mean that all three components of the vector
on the left side of an equation are the same as the corresponding
components on the right.

Example (c) shows how we abuse the division symbol in a similar
manner. When we write the vector ∆v divided by the scalar ∆t,
we mean the new vector formed by dividing each one of the velocity
components by ∆t.

It’s not hard to imagine a variety of operations that would com-
bine vectors with vectors or vectors with scalars, but only four of
them are required in order to express Newton’s laws:

operation definition
vector + vector Add component by component to

make a new set of three numbers.
vector− vector Subtract component by component

to make a new set of three numbers.
vector · scalar Multiply each component of the vec-

tor by the scalar.
vector/scalar Divide each component of the vector

by the scalar.
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b / The x an y components
of a vector can be thought of as
the shadows it casts onto the x
and y axes.

c / Self-check B.

As an example of an operation that is not useful for physics, there
just aren’t any useful physics applications for dividing a vector by
another vector component by component. In optional section 7.5,
we discuss in more detail the fundamental reasons why some vector
operations are useful and others useless.

We can do algebra with vectors, or with a mixture of vectors
and scalars in the same equation. Basically all the normal rules of
algebra apply, but if you’re not sure if a certain step is valid, you
should simply translate it into three component-based equations and
see if it works.

Order of addition example 1
. If we are adding two force vectors, F + G, is it valid to assume
as in ordinary algebra that F + G is the same as G + F?

. To tell if this algebra rule also applies to vectors, we simply
translate the vector notation into ordinary algebra notation. In
terms of ordinary numbers, the components of the vector F + G
would be Fx + Gx , Fy + Gy , and Fz + Gz , which are certainly the
same three numbers as Gx + Fx , Gy + Fy , and Gz + Fz . Yes, F + G
is the same as G + F.

It is useful to define a symbol r for the vector whose components
are x, y, and z, and a symbol ∆r made out of ∆x, ∆y, and ∆z.

Although this may all seem a little formidable, keep in mind that
it amounts to nothing more than a way of abbreviating equations!
Also, to keep things from getting too confusing the remainder of this
chapter focuses mainly on the ∆r vector, which is relatively easy to
visualize.

self-check A
Translate the equations vx = ∆x/∆t , vy = ∆y/∆t , and vz = ∆z/∆t for
motion with constant velocity into a single equation in vector notation.
. Answer, p. 274

Drawing vectors as arrows

A vector in two dimensions can be easily visualized by drawing
an arrow whose length represents its magnitude and whose direction
represents its direction. The x component of a vector can then be
visualized as the length of the shadow it would cast in a beam of
light projected onto the x axis, and similarly for the y component.
Shadows with arrowheads pointing back against the direction of the
positive axis correspond to negative components.

In this type of diagram, the negative of a vector is the vector
with the same magnitude but in the opposite direction. Multiplying
a vector by a scalar is represented by lengthening the arrow by that
factor, and similarly for division.

self-check B
Given vector Q represented by an arrow in figure c, draw arrows repre-
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d / Example 2.

senting the vectors 1.5Q and −Q. . Answer, p.
274

Discussion Questions

A Would it make sense to define a zero vector? Discuss what the
zero vector’s components, magnitude, and direction would be; are there
any issues here? If you wanted to disqualify such a thing from being a
vector, consider whether the system of vectors would be complete. For
comparison, can you think of a simple arithmetic problem with ordinary
numbers where you need zero as the result? Does the same reasoning
apply to vectors, or not?

B You drive to your friend’s house. How does the magnitude of your ∆r
vector compare with the distance you’ve added to the car’s odometer?

7.2 Calculations With Magnitude and Direction
If you ask someone where Las Vegas is compared to Los Angeles,
they are unlikely to say that the ∆x is 290 km and the ∆y is 230
km, in a coordinate system where the positive x axis is east and the
y axis points north. They will probably say instead that it’s 370 km
to the northeast. If they were being precise, they might specify the
direction as 38 ◦ counterclockwise from east. In two dimensions, we
can always specify a vector’s direction like this, using a single angle.
A magnitude plus an angle suffice to specify everything about the
vector. The following two examples show how we use trigonometry
and the Pythagorean theorem to go back and forth between the x−y
and magnitude-angle descriptions of vectors.

Finding magnitude and angle from components example 2
. Given that the ∆r vector from LA to Las Vegas has ∆x = 290 km
and ∆y = 230 km, how would we find the magnitude and direction
of ∆r?

. We find the magnitude of ∆r from the Pythagorean theorem:

|∆r| =
√
∆x2 + ∆y2

= 370 km

We know all three sides of the triangle, so the angle θ can be
found using any of the inverse trig functions. For example, we
know the opposite and adjacent sides, so

θ = tan−1 ∆y
∆x

= 38 ◦ .

Finding components from magnitude and angle example 3
. Given that the straight-line distance from Los Angeles to Las
Vegas is 370 km, and that the angle θ in the figure is 38 ◦, how
can the xand y components of the ∆r vector be found?
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e / Example 4.

. The sine and cosine of θ relate the given information to the
information we wish to find:

cos θ =
∆x
|∆r|

sin θ =
∆y
|∆r|

Solving for the unknowns gives

∆x = |∆r| cos θ
= 290 km and

∆y = |∆r| sin θ

= 230 km .

The following example shows the correct handling of the plus
and minus signs, which is usually the main cause of mistakes.

Negative components example 4
. San Diego is 120 km east and 150 km south of Los Angeles. An
airplane pilot is setting course from San Diego to Los Angeles. At
what angle should she set her course, measured counterclock-
wise from east, as shown in the figure?

. If we make the traditional choice of coordinate axes, with x
pointing to the right and y pointing up on the map, then her ∆x is
negative, because her final x value is less than her initial x value.
Her ∆y is positive, so we have

∆x = −120 km
∆y = 150 km .

If we work by analogy with the previous example, we get

θ = tan−1 ∆y
∆x

= tan−1(−1.25)
= −51 ◦ .

According to the usual way of defining angles in trigonometry,
a negative result means an angle that lies clockwise from the x
axis, which would have her heading for the Baja California. What
went wrong? The answer is that when you ask your calculator to
take the arctangent of a number, there are always two valid pos-
sibilities differing by 180 ◦. That is, there are two possible angles
whose tangents equal -1.25:

tan 129 ◦ = −1.25
tan−51 ◦ = −1.25

You calculator doesn’t know which is the correct one, so it just
picks one. In this case, the one it picked was the wrong one, and
it was up to you to add 180 ◦to it to find the right answer.
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f / Example 5.

g / Vectors can be added graph-
ically by placing them tip to tail,
and then drawing a vector from
the tail of the first vector to the tip
of the second vector.

Discussion Question

A In the example above, we dealt with components that were negative.
Does it make sense to talk about positive and negative vectors?

7.3 Techniques for Adding Vectors
Addition of vectors given their components

The easiest type of vector addition is when you are in possession
of the components, and want to find the components of their sum.

Adding components example 5
. Given the ∆x and ∆y values from the previous examples, find
the ∆x and ∆y from San Diego to Las Vegas.
.

∆xtotal = ∆x1 + ∆x2

= −120 km + 290 km
= 170 km

∆ytotal = ∆y1 + ∆y2

= 150 km + 230 km
= 380

Note how the signs of the x components take care of the west-
ward and eastward motions, which partially cancel.

Addition of vectors given their magnitudes and directions

In this case, you must first translate the magnitudes and direc-
tions into components, and the add the components.

Graphical addition of vectors

Often the easiest way to add vectors is by making a scale drawing
on a piece of paper. This is known as graphical addition, as opposed
to the analytic techniques discussed previously.

LA to Vegas, graphically example 6
. Given the magnitudes and angles of the ∆r vectors from San
Diego to Los Angeles and from Los Angeles to Las Vegas, find
the magnitude and angle of the ∆r vector from San Diego to Las
Vegas.

. Using a protractor and a ruler, we make a careful scale drawing,
as shown in figure h. A scale of 1 mm→ 2 km was chosen for this
solution. With a ruler, we measure the distance from San Diego
to Las Vegas to be 206 mm, which corresponds to 412 km. With
a protractor, we measure the angle θ to be 65 ◦.

Even when we don’t intend to do an actual graphical calculation
with a ruler and protractor, it can be convenient to diagram the
addition of vectors in this way. With ∆r vectors, it intuitively makes
sense to lay the vectors tip-to-tail and draw the sum vector from the
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tail of the first vector to the tip of the second vector. We can do
the same when adding other vectors such as force vectors.

h / Example 6.

self-check C
How would you subtract vectors graphically? . Answer, p. 274
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Discussion Questions

A If you’re doing graphical addition of vectors, does it matter which
vector you start with and which vector you start from the other vector’s
tip?

B If you add a vector with magnitude 1 to a vector of magnitude 2,
what magnitudes are possible for the vector sum?

C Which of these examples of vector addition are correct, and which
are incorrect?

7.4 ? Unit Vector Notation
When we want to specify a vector by its components, it can be cum-
bersome to have to write the algebra symbol for each component:

∆x = 290 km, ∆y = 230 km

A more compact notation is to write

∆r = (290 km)x̂ + (230 km)ŷ ,

where the vectors x̂, ŷ, and ẑ, called the unit vectors, are defined
as the vectors that have magnitude equal to 1 and directions lying
along the x, y, and z axes. In speech, they are referred to as “x-hat”
and so on.

A slightly different, and harder to remember, version of this
notation is unfortunately more prevalent. In this version, the unit
vectors are called î, ĵ, and k̂:

∆r = (290 km)̂i + (230 km)̂j .

7.5 ? Rotational Invariance
Let’s take a closer look at why certain vector operations are use-
ful and others are not. Consider the operation of multiplying two
vectors component by component to produce a third vector:

Rx = PxQx

Ry = PyQy

Rz = PzQz

As a simple example, we choose vectors P and Q to have length
1, and make them perpendicular to each other, as shown in figure
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i / Component-by-component
multiplication of the vectors in 1
would produce different vectors
in coordinate systems 2 and 3.

i/1. If we compute the result of our new vector operation using the
coordinate system in i/2, we find:

Rx = 0

Ry = 0

Rz = 0

The x component is zero because Px = 0, the y component is zero
because Qy = 0, and the z component is of course zero because both
vectors are in the x − y plane. However, if we carry out the same
operations in coordinate system i/3, rotated 45 degrees with respect
to the previous one, we find

Rx = 1/2

Ry = −1/2

Rz = 0

The operation’s result depends on what coordinate system we use,
and since the two versions of R have different lengths (one being zero
and the other nonzero), they don’t just represent the same answer
expressed in two different coordinate systems. Such an operation
will never be useful in physics, because experiments show physics
works the same regardless of which way we orient the laboratory
building! The useful vector operations, such as addition and scalar
multiplication, are rotationally invariant, i.e., come out the same
regardless of the orientation of the coordinate system.
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Summary
Selected Vocabulary
vector . . . . . . . a quantity that has both an amount (magni-

tude) and a direction in space
magnitude . . . . the “amount” associated with a vector
scalar . . . . . . . a quantity that has no direction in space, only

an amount

Notation
A . . . . . . . . . a vector with components Ax, Ay, and Az−→
A . . . . . . . . . handwritten notation for a vector
|A| . . . . . . . . the magnitude of vector A
r . . . . . . . . . . the vector whose components are x, y, and z
∆r . . . . . . . . . the vector whose components are ∆x, ∆y, and

∆z
x̂, ŷ, ẑ . . . . . . (optional topic) unit vectors; the vectors with

magnitude 1 lying along the x, y, and z axes

î, ĵ, k̂ . . . . . . . a harder to remember notation for the unit
vectors

Other Terminology and Notation
displacement vec-
tor . . . . . . . . .

a name for the symbol ∆r

speed . . . . . . . the magnitude of the velocity vector, i.e., the
velocity stripped of any information about its
direction

Summary

A vector is a quantity that has both a magnitude (amount) and
a direction in space, as opposed to a scalar, which has no direction.
The vector notation amounts simply to an abbreviation for writing
the vector’s three components.

In two dimensions, a vector can be represented either by its two
components or by its magnitude and direction. The two ways of
describing a vector can be related by trigonometry.

The two main operations on vectors are addition of a vector to
a vector, and multiplication of a vector by a scalar.

Vector addition means adding the components of two vectors
to form the components of a new vector. In graphical terms, this
corresponds to drawing the vectors as two arrows laid tip-to-tail and
drawing the sum vector from the tail of the first vector to the tip
of the second one. Vector subtraction is performed by negating the
vector to be subtracted and then adding.

Multiplying a vector by a scalar means multiplying each of its
components by the scalar to create a new vector. Division by a
scalar is defined similarly.
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Problem 1.

Problem 4.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 The figure shows vectors A and B. Graphically calculate the
following:

A + B, A−B, B−A, −2B, A− 2B

No numbers are involved.

2 Phnom Penh is 470 km east and 250 km south of Bangkok.
Hanoi is 60 km east and 1030 km north of Phnom Penh.
(a) Choose a coordinate system, and translate these data into ∆x
and ∆y values with the proper plus and minus signs.
(b) Find the components of the ∆r vector pointing from Bangkok
to Hanoi.

√

3 If you walk 35 km at an angle 25 ◦ counterclockwise from east,
and then 22 km at 230 ◦ counterclockwise from east, find the distance
and direction from your starting point to your destination.

√

4 A machinist is drilling holes in a piece of aluminum according
to the plan shown in the figure. She starts with the top hole, then
moves to the one on the left, and then to the one on the right. Since
this is a high-precision job, she finishes by moving in the direction
and at the angle that should take her back to the top hole, and
checks that she ends up in the same place. What are the distance
and direction from the right-hand hole to the top one?

√

5 Suppose someone proposes a new operation in which a vector
A and a scalar B are added together to make a new vector C like
this:

Cx = Ax +B

Cy = Ay +B

Cz = Az +B

Prove that this operation won’t be useful in physics, because it’s
not rotationally invariant.
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Chapter 8

Vectors and Motion

In 1872, capitalist and former California governor Leland Stanford
asked photographer Eadweard Muybridge if he would work for him
on a project to settle a $25,000 bet (a princely sum at that time).
Stanford’s friends were convinced that a galloping horse always had
at least one foot on the ground, but Stanford claimed that there was
a moment during each cycle of the motion when all four feet were
in the air. The human eye was simply not fast enough to settle the
question. In 1878, Muybridge finally succeeded in producing what
amounted to a motion picture of the horse, showing conclusively
that all four feet did leave the ground at one point. (Muybridge was
a colorful figure in San Francisco history, and his acquittal for the
murder of his wife’s lover was considered the trial of the century in
California.)

The losers of the bet had probably been influenced by Aris-
totelian reasoning, for instance the expectation that a leaping horse
would lose horizontal velocity while in the air with no force to push
it forward, so that it would be more efficient for the horse to run
without leaping. But even for students who have converted whole-
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a / Example 1.

heartedly to Newtonianism, the relationship between force and ac-
celeration leads to some conceptual difficulties, the main one being
a problem with the true but seemingly absurd statement that an
object can have an acceleration vector whose direction is not the
same as the direction of motion. The horse, for instance, has nearly
constant horizontal velocity, so its ax is zero. But as anyone can tell
you who has ridden a galloping horse, the horse accelerates up and
down. The horse’s acceleration vector therefore changes back and
forth between the up and down directions, but is never in the same
direction as the horse’s motion. In this chapter, we will examine
more carefully the properties of the velocity, acceleration, and force
vectors. No new principles are introduced, but an attempt is made
to tie things together and show examples of the power of the vector
formulation of Newton’s laws.

8.1 The Velocity Vector
For motion with constant velocity, the velocity vector is

v = ∆r/∆t . [only for constant velocity]

The ∆r vector points in the direction of the motion, and dividing
it by the scalar ∆t only changes its length, not its direction, so the
velocity vector points in the same direction as the motion. When
the velocity is not constant, i.e., when the x−t, y−t, and z−t graphs
are not all linear, we use the slope-of-the-tangent-line approach to
define the components vx, vy, and vz, from which we assemble the
velocity vector. Even when the velocity vector is not constant, it
still points along the direction of motion.

Vector addition is the correct way to generalize the one-dimensional
concept of adding velocities in relative motion, as shown in the fol-
lowing example:

Velocity vectors in relative motion example 1
. You wish to cross a river and arrive at a dock that is directly
across from you, but the river’s current will tend to carry you
downstream. To compensate, you must steer the boat at an an-
gle. Find the angle θ, given the magnitude, |vWL|, of the water’s
velocity relative to the land, and the maximum speed, |vBW |, of
which the boat is capable relative to the water.

. The boat’s velocity relative to the land equals the vector sum of
its velocity with respect to the water and the water’s velocity with
respect to the land,

vBL = vBW + vWL .

If the boat is to travel straight across the river, i.e., along the y
axis, then we need to have vBL,x = 0. This x component equals
the sum of the x components of the other two vectors,

vBL,x = vBW ,x + vWL,x ,
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or
0 = −|vBW | sin θ + |vWL| .

Solving for θ, we find

sin θ = |vWL|/|vBW | ,

so

θ = sin−1 |vWL|
vBW

.

. Solved problem: Annie Oakley page 214, problem 8

Discussion Questions

A Is it possible for an airplane to maintain a constant velocity vector
but not a constant |v|? How about the opposite – a constant |v| but not a
constant velocity vector? Explain.

B New York and Rome are at about the same latitude, so the earth’s
rotation carries them both around nearly the same circle. Do the two cities
have the same velocity vector (relative to the center of the earth)? If not,
is there any way for two cities to have the same velocity vector?
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b / A change in the magni-
tude of the velocity vector implies
an acceleration.

c / A change in the direction
of the velocity vector also pro-
duces a nonzero ∆v vector, and
thus a nonzero acceleration
vector, ∆v/∆t .

8.2 The Acceleration Vector
When all three acceleration components are constant, i.e., when

the vx − t, vy − t, and vz − t graphs are all linear, we can define the
acceleration vector as

a = ∆v/∆t , [only for constant acceleration]

which can be written in terms of initial and final velocities as

a = (vf − vi)/∆t . [only for constant acceleration]

If the acceleration is not constant, we define it as the vector made
out of the ax, ay, and az components found by applying the slope-
of-the-tangent-line technique to the vx− t, vy− t, and vz − t graphs.

Now there are two ways in which we could have a nonzero accel-
eration. Either the magnitude or the direction of the velocity vector
could change. This can be visualized with arrow diagrams as shown
in figures b and c. Both the magnitude and direction can change
simultaneously, as when a car accelerates while turning. Only when
the magnitude of the velocity changes while its direction stays con-
stant do we have a ∆v vector and an acceleration vector along the
same line as the motion.

self-check A
(1) In figure b, is the object speeding up, or slowing down? (2) What
would the diagram look like if vi was the same as vf ? (3) Describe how
the ∆v vector is different depending on whether an object is speeding
up or slowing down. . Answer, p. 274

If this all seems a little strange and abstract to you, you’re not
alone. It doesn’t mean much to most physics students the first
time someone tells them that acceleration is a vector, and that the
acceleration vector does not have to be in the same direction as the
velocity vector. One way to understand those statements better is
to imagine an object such as an air freshener or a pair of fuzzy dice
hanging from the rear-view mirror of a car. Such a hanging object,
called a bob, constitutes an accelerometer. If you watch the bob
as you accelerate from a stop light, you’ll see it swing backward.
The horizontal direction in which the bob tilts is opposite to the
direction of the acceleration. If you apply the brakes and the car’s
acceleration vector points backward, the bob tilts forward.

After accelerating and slowing down a few times, you think
you’ve put your accelerometer through its paces, but then you make
a right turn. Surprise! Acceleration is a vector, and needn’t point
in the same direction as the velocity vector. As you make a right
turn, the bob swings outward, to your left. That means the car’s
acceleration vector is to your right, perpendicular to your velocity
vector. A useful definition of an acceleration vector should relate
in a systematic way to the actual physical effects produced by the
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acceleration, so a physically reasonable definition of the acceleration
vector must allow for cases where it is not in the same direction as
the motion.

self-check B
In projectile motion, what direction does the acceleration vector have?
. Answer, p. 274

d / Example 2.

Rappelling example 2
In figure d, the rappeller’s velocity has long periods of gradual
change interspersed with short periods of rapid change. These
correspond to periods of small acceleration and force, and peri-
ods of large acceleration and force.

The galloping horse example 3
Figure e on page 206 shows outlines traced from the first, third,
fifth, seventh, and ninth frames in Muybridge’s series of pho-
tographs of the galloping horse. The estimated location of the
horse’s center of mass is shown with a circle, which bobs above
and below the horizontal dashed line.

If we don’t care about calculating velocities and accelerations in
any particular system of units, then we can pretend that the time
between frames is one unit. The horse’s velocity vector as it
moves from one point to the next can then be found simply by
drawing an arrow to connect one position of the center of mass to
the next. This produces a series of velocity vectors which alter-

Section 8.2 The Acceleration Vector 205



e / Example 3.

nate between pointing above and below horizontal.

The ∆v vector is the vector which we would have to add onto one
velocity vector in order to get the next velocity vector in the series.
The ∆v vector alternates between pointing down (around the time
when the horse is in the air, B) and up (around the time when the
horse has two feet on the ground, D).

Discussion Questions

A When a car accelerates, why does a bob hanging from the rearview
mirror swing toward the back of the car? Is it because a force throws it
backward? If so, what force? Similarly, describe what happens in the
other cases described above.

B Superman is guiding a crippled spaceship into port. The ship’s
engines are not working. If Superman suddenly changes the direction of
his force on the ship, does the ship’s velocity vector change suddenly? Its
acceleration vector? Its direction of motion?
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f / Example 4.

g / The applied force FA pushes
the block up the frictionless ramp.

h / Three forces act on the
block. Their vector sum is zero.

i / If the block is to move at
constant velocity, Newton’s first
law says that the three force
vectors acting on it must add
up to zero. To perform vector
addition, we put the vectors tip
to tail, and in this case we are
adding three vectors, so each
one’s tail goes against the tip of
the previous one. Since they are
supposed to add up to zero, the
third vector’s tip must come back
to touch the tail of the first vector.
They form a triangle, and since
the applied force is perpendicular
to the normal force, it is a right
triangle.

8.3 The Force Vector and Simple Machines
Force is relatively easy to intuit as a vector. The force vector points
in the direction in which it is trying to accelerate the object it is
acting on.

Since force vectors are so much easier to visualize than accel-
eration vectors, it is often helpful to first find the direction of the
(total) force vector acting on an object, and then use that informa-
tion to determine the direction of the acceleration vector. Newton’s
second law, Ftotal = ma, tells us that the two must be in the same
direction.

A component of a force vector example 4
Figure f, redrawn from a classic 1920 textbook, shows a boy
pulling another child on a sled. His force has both a horizontal
component and a vertical one, but only the horizontal one accel-
erates the sled. (The vertical component just partially cancels the
force of gravity, causing a decrease in the normal force between
the runners and the snow.) There are two triangles in the figure.
One triangle’s hypotenuse is the rope, and the other’s is the mag-
nitude of the force. These triangles are similar, so their internal
angles are all the same, but they are not the same triangle. One
is a distance triangle, with sides measured in meters, the other
a force triangle, with sides in newtons. In both cases, the hori-
zontal leg is 93% as long as the hypotenuse. It does not make
sense, however, to compare the sizes of the triangles — the force
triangle is not smaller in any meaningful sense.

Pushing a block up a ramp example 5
. Figure (a) shows a block being pushed up a frictionless ramp
at constant speed by an applied force FA. How much force is
required, in terms of the block’s mass, m, and the angle of the
ramp, θ?

. Figure (b) shows the other two forces acting on the block: a
normal force, FN , created by the ramp, and the weight force, FW ,
created by the earth’s gravity. Because the block is being pushed
up at constant speed, it has zero acceleration, and the total force
on it must be zero. From figure (c), we find

|FA| = |FW | sin θ

= mg sin θ .

Since the sine is always less than one, the applied force is always
less than mg, i.e., pushing the block up the ramp is easier than
lifting it straight up. This is presumably the principle on which the
pyramids were constructed: the ancient Egyptians would have
had a hard time applying the forces of enough slaves to equal the
full weight of the huge blocks of stone.

Essentially the same analysis applies to several other simple ma-
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Discussion question A.

j / Discussion question B.

chines, such as the wedge and the screw.

. Solved problem: A cargo plane page 214, problem 9

. Solved problem: The angle of repose page 215, problem 11

. Solved problem: A wagon page 214, problem 10

Discussion Questions
A The figure shows a block being pressed diagonally upward against a
wall, causing it to slide up the wall. Analyze the forces involved, including
their directions.

B The figure shows a roller coaster car rolling down and then up under
the influence of gravity. Sketch the car’s velocity vectors and acceleration
vectors. Pick an interesting point in the motion and sketch a set of force
vectors acting on the car whose vector sum could have resulted in the
right acceleration vector.

8.4
∫

Calculus With Vectors
Using the unit vector notation introduced in section 7.4, the defini-
tions of the velocity and acceleration components given in chapter
6 can be translated into calculus notation as

v =
dx

dt
x̂ +

dy

dt
ŷ +

dz

dt
ẑ

and

a =
dvx
dt

x̂ +
dvy
dt

ŷ +
dvz
dt

ẑ .

To make the notation less cumbersome, we generalize the concept
of the derivative to include derivatives of vectors, so that we can
abbreviate the above equations as

v =
dr

dt

and

a =
dv

dt
.

In words, to take the derivative of a vector, you take the derivatives
of its components and make a new vector out of those. This defini-
tion means that the derivative of a vector function has the familiar
properties

d(cf)

dt
= c

d(f)

dt
[c is a constant]

and

d(f + g)

dt
=

d(f)

dt
+

d(g)

dt
.

The integral of a vector is likewise defined as integrating component
by component.
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The second derivative of a vector example 6
. Two objects have positions as functions of time given by the
equations

r1 = 3t2x̂ + t ŷ

and

r2 = 3t4x̂ + t ŷ .

Find both objects’ accelerations using calculus. Could either an-
swer have been found without calculus?

. Taking the first derivative of each component, we find

v1 = 6t x̂ + ŷ

v2 = 12t3x̂ + ŷ ,

and taking the derivatives again gives acceleration,

a1 = 6x̂

a2 = 36t2x̂ .

The first object’s acceleration could have been found without cal-
culus, simply by comparing the x and y coordinates with the
constant-acceleration equation ∆x = vo∆t + 1

2a∆t2. The second
equation, however, isn’t just a second-order polynomial in t , so
the acceleration isn’t constant, and we really did need calculus to
find the corresponding acceleration.

The integral of a vector example 7
. Starting from rest, a flying saucer of mass m is observed to
vary its propulsion with mathematical precision according to the
equation

F = bt42x̂ + ct137ŷ .

(The aliens inform us that the numbers 42 and 137 have a special
religious significance for them.) Find the saucer’s velocity as a
function of time.

. From the given force, we can easily find the acceleration

a =
F
m

=
b
m

t42x̂ +
c
m

t137ŷ .

The velocity vector v is the integral with respect to time of the
acceleration,

v =
∫

a dt

=
∫ (

b
m

t42x̂ +
c
m

t137ŷ
)

dt ,
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and integrating component by component gives

=
(∫

b
m

t42 dt
)

x̂ +
(∫

c
m

t137 dt
)

ŷ

=
b

43m
t43x̂ +

c
138m

t138ŷ ,

where we have omitted the constants of integration, since the
saucer was starting from rest.

A fire-extinguisher stunt on ice example 8
. Prof. Puerile smuggles a fire extinguisher into a skating rink.
Climbing out onto the ice without any skates on, he sits down and
pushes off from the wall with his feet, acquiring an initial velocity
voŷ. At t = 0, he then discharges the fire extinguisher at a 45-
degree angle so that it applies a force to him that is backward
and to the left, i.e., along the negative y axis and the positive x
axis. The fire extinguisher’s force is strong at first, but then dies
down according to the equation |F| = b − ct , where b and c are
constants. Find the professor’s velocity as a function of time.

. Measured counterclockwise from the x axis, the angle of the
force vector becomes 315 ◦. Breaking the force down into x and
y components, we have

Fx = |F| cos 315 ◦

= (b − ct)
Fy = |F| sin 315 ◦

= (−b + ct) .

In unit vector notation, this is

F = (b − ct)x̂ + (−b + ct)ŷ .

Newton’s second law gives

a = F/m

=
b − ct√

2m
x̂ +
−b + ct√

2m
ŷ .

To find the velocity vector as a function of time, we need to inte-
grate the acceleration vector with respect to time,

v =
∫

a dt

=
∫ (

b − ct√
2m

x̂ +
−b + ct√

2m
ŷ
)

dt

=
1√
2m

∫ [
(b − ct) x̂ + (−b + ct) ŷ

]
dt
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A vector function can be integrated component by component, so
this can be broken down into two integrals,

v =
x̂√
2m

∫
(b − ct) dt +

ŷ√
2m

∫
(−b + ct) dt

=

(
bt − 1

2ct2
√

2m
+ constant #1

)
x̂ +

(
−bt + 1

2ct2
√

2m
+ constant #2

)
ŷ

Here the physical significance of the two constants of integration
is that they give the initial velocity. Constant #1 is therefore zero,
and constant #2 must equal vo. The final result is

v =

(
bt − 1

2ct2
√

2m

)
x̂ +

(
−bt + 1

2ct2
√

2m
+ vo

)
ŷ .
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Summary
The velocity vector points in the direction of the object’s motion.
Relative motion can be described by vector addition of velocities.

The acceleration vector need not point in the same direction as
the object’s motion. We use the word “acceleration” to describe any
change in an object’s velocity vector, which can be either a change
in its magnitude or a change in its direction.

An important application of the vector addition of forces is the
use of Newton’s first law to analyze mechanical systems.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

Problem 1.

1 A dinosaur fossil is slowly moving down the slope of a glacier
under the influence of wind, rain and gravity. At the same time,
the glacier is moving relative to the continent underneath. The
dashed lines represent the directions but not the magnitudes of the
velocities. Pick a scale, and use graphical addition of vectors to find
the magnitude and the direction of the fossil’s velocity relative to
the continent. You will need a ruler and protractor.

√

2 Is it possible for a helicopter to have an acceleration due east
and a velocity due west? If so, what would be going on? If not, why
not?

3 A bird is initially flying horizontally east at 21.1 m/s, but one
second later it has changed direction so that it is flying horizontally
and 7 ◦ north of east, at the same speed. What are the magnitude
and direction of its acceleration vector during that one second time
interval? (Assume its acceleration was roughly constant.)

√

Problem 4.

4 A person of mass M stands in the middle of a tightrope,
which is fixed at the ends to two buildings separated by a horizontal
distance L. The rope sags in the middle, stretching and lengthening
the rope slightly.
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Problem 5.

Problem 9.

Problem 10.

(a) If the tightrope walker wants the rope to sag vertically by no
more than a height h, find the minimum tension, T , that the rope
must be able to withstand without breaking, in terms of h, g, M ,
and L.

√

(b) Based on your equation, explain why it is not possible to get
h = 0, and give a physical interpretation.

5 Your hand presses a block of mass m against a wall with a
force FH acting at an angle θ, as shown in the figure. Find the
minimum and maximum possible values of |FH | that can keep the
block stationary, in terms of m, g, θ, and µs, the coefficient of static
friction between the block and the wall. Check both your answers
in the case of θ = 90 ◦, and interpret the case where the maximum
force is infinite.

√
?

6 A skier of mass m is coasting down a slope inclined at an angle
θ compared to horizontal. Assume for simplicity that the treatment
of kinetic friction given in chapter 5 is appropriate here, although a
soft and wet surface actually behaves a little differently. The coeffi-
cient of kinetic friction acting between the skis and the snow is µk,
and in addition the skier experiences an air friction force of magni-
tude bv2, where b is a constant.
(a) Find the maximum speed that the skier will attain, in terms of
the variables m, g, θ, µk, and b.

√

(b) For angles below a certain minimum angle θmin, the equation
gives a result that is not mathematically meaningful. Find an equa-
tion for θmin, and give a physical explanation of what is happening
for θ < θmin.

7 A gun is aimed horizontally to the west, and fired at t = 0. The
bullet’s position vector as a function of time is r = bx̂ + ctŷ + dt2ẑ,
where b, c, and d are positive constants.
(a) What units would b, c, and d need to have for the equation to
make sense?
(b) Find the bullet’s velocity and acceleration as functions of time.
(c) Give physical interpretations of b, c, d, x̂, ŷ, and ẑ.

∫
8 Annie Oakley, riding north on horseback at 30 mi/hr, shoots
her rifle, aiming horizontally and to the northeast. The muzzle speed
of the rifle is 140 mi/hr. When the bullet hits a defenseless fuzzy
animal, what is its speed of impact? Neglect air resistance, and
ignore the vertical motion of the bullet. . Solution, p. 281

9 A cargo plane has taken off from a tiny airstrip in the Andes,
and is climbing at constant speed, at an angle of θ=17 ◦with respect
to horizontal. Its engines supply a thrust of Fthrust = 200 kN, and
the lift from its wings is Flift = 654 kN. Assume that air resistance
(drag) is negligible, so the only forces acting are thrust, lift, and
weight. What is its mass, in kg? . Solution, p. 282

10 A wagon is being pulled at constant speed up a slope θ by a
rope that makes an angle φ with the vertical.
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Problem 12.

Problem 13 (Millikan and Gale,
1920).

(a) Assuming negligible friction, show that the tension in the rope
is given by the equation

FT =
sin θ

sin(θ + φ)
FW ,

where FW is the weight force acting on the wagon.
(b) Interpret this equation in the special cases of φ = 0 and φ =
180 ◦ − θ. . Solution, p. 282

11 The angle of repose is the maximum slope on which an object
will not slide. On airless, geologically inert bodies like the moon or
an asteroid, the only thing that determines whether dust or rubble
will stay on a slope is whether the slope is less steep than the angle
of repose.
(a) Find an equation for the angle of repose, deciding for yourself
what are the relevant variables.
(b) On an asteroid, where g can be thousands of times lower than
on Earth, would rubble be able to lie at a steeper angle of repose?

. Solution, p. 283

12 The figure shows an experiment in which a cart is released
from rest at A, and accelerates down the slope through a distance
x until it passes through a sensor’s light beam. The point of the
experiment is to determine the cart’s acceleration. At B, a card-
board vane mounted on the cart enters the light beam, blocking the
light beam, and starts an electronic timer running. At C, the vane
emerges from the beam, and the timer stops.
(a) Find the final velocity of the cart in terms of the width w of
the vane and the time tb for which the sensor’s light beam was
blocked.

√

(b) Find the magnitude of the cart’s acceleration in terms of the
measurable quantities x, tb, and w.

√

(c) Analyze the forces in which the cart participates, using a table in
the format introduced in section 5.3. Assume friction is negligible.
(d) Find a theoretical value for the acceleration of the cart, which
could be compared with the experimentally observed value extracted
in part b. Express the theoretical value in terms of the angle θ of
the slope, and the strength g of the gravitational field.

√

13 The figure shows a boy hanging in three positions: (1) with
his arms straight up, (2) with his arms at 45 degrees, and (3) with
his arms at 60 degrees with respect to the vertical. Compare the
tension in his arms in the three cases.
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Problem 15.

14 Driving down a hill inclined at an angle θ with respect to
horizontal, you slam on the brakes to keep from hitting a deer. Your
antilock brakes kick in, and you don’t skid.
(a) Analyze the forces. (Ignore rolling resistance and air friction.)
(b) Find the car’s maximum possible deceleration, a (expressed as
a positive number), in terms of g, θ, and the relevant coefficient of
friction.

√

(c) Explain physically why the car’s mass has no effect on your
answer.
(d) Discuss the mathematical behavior and physical interpretation
of your result for negative values of θ.
(e) Do the same for very large positive values of θ.

15 The figure shows the path followed by Hurricane Irene in
2005 as it moved north. The dots show the location of the center
of the storm at six-hour intervals, with lighter dots at the time
when the storm reached its greatest intensity. Find the time when
the storm’s center had a velocity vector to the northeast and an
acceleration vector to the southeast.
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Chapter 9

Circular Motion

9.1 Conceptual Framework for Circular Motion
I now live fifteen minutes from Disneyland, so my friends and family
in my native Northern California think it’s a little strange that I’ve
never visited the Magic Kingdom again since a childhood trip to the
south. The truth is that for me as a preschooler, Disneyland was
not the Happiest Place on Earth. My mother took me on a ride in
which little cars shaped like rocket ships circled rapidly around a
central pillar. I knew I was going to die. There was a force trying to
throw me outward, and the safety features of the ride would surely
have been inadequate if I hadn’t screamed the whole time to make
sure Mom would hold on to me. Afterward, she seemed surprisingly
indifferent to the extreme danger we had experienced.

Circular motion does not produce an outward force

My younger self’s understanding of circular motion was partly
right and partly wrong. I was wrong in believing that there was a
force pulling me outward, away from the center of the circle. The
easiest way to understand this is to bring back the parable of the
bowling ball in the pickup truck from chapter 4. As the truck makes
a left turn, the driver looks in the rearview mirror and thinks that
some mysterious force is pulling the ball outward, but the truck
is accelerating, so the driver’s frame of reference is not an inertial
frame. Newton’s laws are violated in a noninertial frame, so the ball
appears to accelerate without any actual force acting on it. Because
we are used to inertial frames, in which accelerations are caused by
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b / This crane fly’s halteres
help it to maintain its orientation
in flight.

forces, the ball’s acceleration creates a vivid illusion that there must
be an outward force.

a / 1. In the turning truck’s frame
of reference, the ball appears
to violate Newton’s laws, dis-
playing a sideways acceleration
that is not the result of a force-
interaction with any other object.
2. In an inertial frame of refer-
ence, such as the frame fixed to
the earth’s surface, the ball obeys
Newton’s first law. No forces are
acting on it, and it continues mov-
ing in a straight line. It is the truck
that is participating in an interac-
tion with the asphalt, the truck that
accelerates as it should according
to Newton’s second law.

In an inertial frame everything makes more sense. The ball has
no force on it, and goes straight as required by Newton’s first law.
The truck has a force on it from the asphalt, and responds to it
by accelerating (changing the direction of its velocity vector) as
Newton’s second law says it should.

The halteres example 1
Another interesting example is an insect organ called the hal-
teres, a pair of small knobbed limbs behind the wings, which vi-
brate up and down and help the insect to maintain its orientation
in flight. The halteres evolved from a second pair of wings pos-
sessed by earlier insects. Suppose, for example, that the halteres
are on their upward stroke, and at that moment an air current
causes the fly to pitch its nose down. The halteres follow New-
ton’s first law, continuing to rise vertically, but in the fly’s rotating
frame of reference, it seems as though they have been subjected
to a backward force. The fly has special sensory organs that per-
ceive this twist, and help it to correct itself by raising its nose.

Circular motion does not persist without a force

I was correct, however, on a different point about the Disneyland
ride. To make me curve around with the car, I really did need some
force such as a force from my mother, friction from the seat, or a
normal force from the side of the car. (In fact, all three forces were
probably adding together.) One of the reasons why Galileo failed to
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c / 1. An overhead view of a per-
son swinging a rock on a rope. A
force from the string is required
to make the rock’s velocity vector
keep changing direction. 2. If the
string breaks, the rock will follow
Newton’s first law and go straight
instead of continuing around the
circle.

refine the principle of inertia into a quantitative statement like New-
ton’s first law is that he was not sure whether motion without a force
would naturally be circular or linear. In fact, the most impressive
examples he knew of the persistence of motion were mostly circular:
the spinning of a top or the rotation of the earth, for example. New-
ton realized that in examples such as these, there really were forces
at work. Atoms on the surface of the top are prevented from flying
off straight by the ordinary force that keeps atoms stuck together in
solid matter. The earth is nearly all liquid, but gravitational forces
pull all its parts inward.

Uniform and nonuniform circular motion

Circular motion always involves a change in the direction of the
velocity vector, but it is also possible for the magnitude of the ve-
locity to change at the same time. Circular motion is referred to as
uniform if |v| is constant, and nonuniform if it is changing.

Your speedometer tells you the magnitude of your car’s velocity
vector, so when you go around a curve while keeping your speedome-
ter needle steady, you are executing uniform circular motion. If your
speedometer reading is changing as you turn, your circular motion
is nonuniform. Uniform circular motion is simpler to analyze math-
ematically, so we will attack it first and then pass to the nonuniform
case.

self-check A
Which of these are examples of uniform circular motion and which are
nonuniform?

(1) the clothes in a clothes dryer (assuming they remain against the
inside of the drum, even at the top)

(2) a rock on the end of a string being whirled in a vertical circle .

Answer, p. 274
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d / To make the brick go in a
circle, I had to exert an inward
force on the rope.

f / When a car is going straight
at constant speed, the forward
and backward forces on it are
canceling out, producing a total
force of zero. When it moves
in a circle at constant speed,
there are three forces on it, but
the forward and backward forces
cancel out, so the vector sum is
an inward force.

Only an inward force is required for uniform circular motion.
Figure c showed the string pulling in straight along a radius of

the circle, but many people believe that when they are doing this
they must be “leading” the rock a little to keep it moving along.
That is, they believe that the force required to produce uniform
circular motion is not directly inward but at a slight angle to the
radius of the circle. This intuition is incorrect, which you can easily
verify for yourself now if you have some string handy. It is only
while you are getting the object going that your force needs to be at
an angle to the radius. During this initial period of speeding up, the
motion is not uniform. Once you settle down into uniform circular
motion, you only apply an inward force.

If you have not done the experiment for yourself, here is a theo-
retical argument to convince you of this fact. We have discussed in
chapter 6 the principle that forces have no perpendicular effects. To
keep the rock from speeding up or slowing down, we only need to
make sure that our force is perpendicular to its direction of motion.
We are then guaranteed that its forward motion will remain unaf-
fected: our force can have no perpendicular effect, and there is no
other force acting on the rock which could slow it down. The rock
requires no forward force to maintain its forward motion, any more
than a projectile needs a horizontal force to “help it over the top”
of its arc.

e / A series of three hammer taps makes the rolling ball trace a tri-
angle, seven hammers a heptagon. If the number of hammers was large
enough, the ball would essentially be experiencing a steady inward force,
and it would go in a circle. In no case is any forward force necessary.
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g / Example 2.

Why, then, does a car driving in circles in a parking lot stop
executing uniform circular motion if you take your foot off the gas?
The source of confusion here is that Newton’s laws predict an ob-
ject’s motion based on the total force acting on it. A car driving in
circles has three forces on it

(1) an inward force from the asphalt, controlled with the steering
wheel;

(2) a forward force from the asphalt, controlled with the gas
pedal; and

(3) backward forces from air resistance and rolling resistance.

You need to make sure there is a forward force on the car so that
the backward forces will be exactly canceled out, creating a vector
sum that points directly inward.

A motorcycle making a turn example 2
The motorcyclist in figure g is moving along an arc of a circle. It
looks like he’s chosen to ride the slanted surface of the dirt at a
place where it makes just the angle he wants, allowing him to get
the force he needs on the tires as a normal force, without needing
any frictional force. The dirt’s normal force on the tires points up
and to our left. The vertical component of that force is canceled
by gravity, while its horizontal component causes him to curve.

In uniform circular motion, the acceleration vector is inward

Since experiments show that the force vector points directly
inward, Newton’s second law implies that the acceleration vector
points inward as well. This fact can also be proven on purely kine-
matical grounds, and we will do so in the next section.
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Discussion questions A-D

Discussion question E.

Discussion Questions

A In the game of crack the whip, a line of people stand holding hands,
and then they start sweeping out a circle. One person is at the center, and
rotates without changing location. At the opposite end is the person who
is running the fastest, in a wide circle. In this game, someone always ends
up losing their grip and flying off. Suppose the person on the end loses
her grip. What path does she follow as she goes flying off? (Assume she
is going so fast that she is really just trying to put one foot in front of the
other fast enough to keep from falling; she is not able to get any significant
horizontal force between her feet and the ground.)

B Suppose the person on the outside is still holding on, but feels that
she may loose her grip at any moment. What force or forces are acting
on her, and in what directions are they? (We are not interested in the
vertical forces, which are the earth’s gravitational force pulling down, and
the ground’s normal force pushing up.)

C Suppose the person on the outside is still holding on, but feels that
she may loose her grip at any moment. What is wrong with the following
analysis of the situation? “The person whose hand she’s holding exerts
an inward force on her, and because of Newton’s third law, there’s an
equal and opposite force acting outward. That outward force is the one
she feels throwing her outward, and the outward force is what might make
her go flying off, if it’s strong enough.”

D If the only force felt by the person on the outside is an inward force,
why doesn’t she go straight in?

E In the amusement park ride shown in the figure, the cylinder spins
faster and faster until the customer can pick her feet up off the floor with-
out falling. In the old Coney Island version of the ride, the floor actually
dropped out like a trap door, showing the ocean below. (There is also a
version in which the whole thing tilts up diagonally, but we’re discussing
the version that stays flat.) If there is no outward force acting on her, why
does she stick to the wall? Analyze all the forces on her.

F What is an example of circular motion where the inward force is a
normal force? What is an example of circular motion where the inward
force is friction? What is an example of circular motion where the inward
force is the sum of more than one force?

G Does the acceleration vector always change continuously in circular
motion? The velocity vector?
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h / The law of sines.

i / Deriving |a| = |v|2/r for
uniform circular motion.

9.2 Uniform Circular Motion
In this section I derive a simple and very useful equation for

the magnitude of the acceleration of an object undergoing constant
acceleration. The law of sines is involved, so I’ve recapped it in
figure h.

The derivation is brief, but the method requires some explana-
tion and justification. The idea is to calculate a ∆v vector describing
the change in the velocity vector as the object passes through an
angle θ. We then calculate the acceleration, a = ∆v/∆t. The as-
tute reader will recall, however, that this equation is only valid for
motion with constant acceleration. Although the magnitude of the
acceleration is constant for uniform circular motion, the acceleration
vector changes its direction, so it is not a constant vector, and the
equation a = ∆v/∆t does not apply. The justification for using it
is that we will then examine its behavior when we make the time
interval very short, which means making the angle θ very small. For
smaller and smaller time intervals, the ∆v/∆t expression becomes
a better and better approximation, so that the final result of the
derivation is exact.

In figure i/1, the object sweeps out an angle θ. Its direction of
motion also twists around by an angle θ, from the vertical dashed
line to the tilted one. Figure i/2 shows the initial and final velocity
vectors, which have equal magnitude, but directions differing by θ.
In i/3, I’ve reassembled the vectors in the proper positions for vector
subtraction. They form an isosceles triangle with interior angles θ,
η, and η. (Eta, η, is my favorite Greek letter.) The law of sines
gives

|∆v|
sin θ

=
|v|

sin η
.

This tells us the magnitude of ∆v, which is one of the two ingredients
we need for calculating the magnitude of a = ∆v/∆t. The other
ingredient is ∆t. The time required for the object to move through
the angle θ is

∆t =
length of arc

|v|
.

Now if we measure our angles in radians we can use the definition of
radian measure, which is (angle) = (length of arc)/(radius), giving
∆t = θr/|v|. Combining this with the first expression involving
|∆v| gives

|a| = |∆v|/∆t

=
|v|2

r
· sin θ

θ
· 1

sin η
.

When θ becomes very small, the small-angle approximation sin θ ≈ θ
applies, and also η becomes close to 90 ◦, so sin η ≈ 1, and we have
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j / Example 6.

an equation for |a|:

|a| = |v|
2

r
. [uniform circular motion]

Force required to turn on a bike example 3
. A bicyclist is making a turn along an arc of a circle with radius
20 m, at a speed of 5 m/s. If the combined mass of the cyclist
plus the bike is 60 kg, how great a static friction force must the
road be able to exert on the tires?

. Taking the magnitudes of both sides of Newton’s second law
gives

|F| = |ma|
= m|a| .

Substituting |a| = |v|2/r gives

|F| = m|v|2/r
≈ 80 N

(rounded off to one sig fig).

Don’t hug the center line on a curve! example 4
. You’re driving on a mountain road with a steep drop on your
right. When making a left turn, is it safer to hug the center line or
to stay closer to the outside of the road?

. You want whichever choice involves the least acceleration, be-
cause that will require the least force and entail the least risk of
exceeding the maximum force of static friction. Assuming the
curve is an arc of a circle and your speed is constant, your car
is performing uniform circular motion, with |a| = |v|2/r . The de-
pendence on the square of the speed shows that driving slowly
is the main safety measure you can take, but for any given speed
you also want to have the largest possible value of r . Even though
your instinct is to keep away from that scary precipice, you are ac-
tually less likely to skid if you keep toward the outside, because
then you are describing a larger circle.

Acceleration related to radius and period of rotation example 5
. How can the equation for the acceleration in uniform circular
motion be rewritten in terms of the radius of the circle and the
period, T , of the motion, i.e., the time required to go around once?

. The period can be related to the speed as follows:

|v| = circumference
T

= 2πr/T .

Substituting into the equation |a| = |v|2/r gives

|a| = 4π2r
T 2 .
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A clothes dryer example 6
. My clothes dryer has a drum with an inside radius of 35 cm, and
it spins at 48 revolutions per minute. What is the acceleration of
the clothes inside?

. We can solve this by finding the period and plugging in to the
result of the previous example. If it makes 48 revolutions in one
minute, then the period is 1/48 of a minute, or 1.25 s. To get an
acceleration in mks units, we must convert the radius to 0.35 m.
Plugging in, the result is 8.8 m/s2.

More about clothes dryers! example 7
. In a discussion question in the previous section, we made the
assumption that the clothes remain against the inside of the drum
as they go over the top. In light of the previous example, is this a
correct assumption?

. No. We know that there must be some minimum speed at which
the motor can run that will result in the clothes just barely stay-
ing against the inside of the drum as they go over the top. If the
clothes dryer ran at just this minimum speed, then there would be
no normal force on the clothes at the top: they would be on the
verge of losing contact. The only force acting on them at the top
would be the force of gravity, which would give them an acceler-
ation of g = 9.8 m/s2. The actual dryer must be running slower
than this minimum speed, because it produces an acceleration of
only 8.8 m/s2. My theory is that this is done intentionally, to make
the clothes mix and tumble.

. Solved problem: The tilt-a-whirl page 229, problem 6

. Solved problem: An off-ramp page 229, problem 7

Discussion Questions

A A certain amount of force is needed to provide the acceleration of
circular motion. What if were are exerting a force perpendicular to the
direction of motion in an attempt to make an object trace a circle of radius
r , but the force isn’t as big as m|v|2/r?

B Suppose a rotating space station, as in figure k on page 226, is built.
It gives its occupants the illusion of ordinary gravity. What happens when
a person in the station lets go of a ball? What happens when she throws
a ball straight “up” in the air (i.e., towards the center)?
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l / 1. Moving in a circle while
speeding up. 2. Uniform circular
motion. 3. Slowing down.

k / Discussion question B. An artist’s conception of a rotating space
colony in the form of a giant wheel. A person living in this noninertial
frame of reference has an illusion of a force pulling her outward, toward
the deck, for the same reason that a person in the pickup truck has the
illusion of a force pulling the bowling ball. By adjusting the speed of ro-
tation, the designers can make an acceleration |v|2/r equal to the usual
acceleration of gravity on earth. On earth, your acceleration standing on
the ground is zero, and a falling rock heads for your feet with an accelera-
tion of 9.8 m/s2. A person standing on the deck of the space colony has
an upward acceleration of 9.8 m/s2, and when she lets go of a rock, her
feet head up at the nonaccelerating rock. To her, it seems the same as
true gravity.

9.3 Nonuniform Circular Motion
What about nonuniform circular motion? Although so far we

have been discussing components of vectors along fixed x and y
axes, it now becomes convenient to discuss components of the accel-
eration vector along the radial line (in-out) and the tangential line
(along the direction of motion). For nonuniform circular motion,
the radial component of the acceleration obeys the same equation
as for uniform circular motion,

ar = |v|2/r ,

but the acceleration vector also has a tangential component,

at = slope of the graph of |v| versus t .

The latter quantity has a simple interpretation. If you are going
around a curve in your car, and the speedometer needle is mov-
ing, the tangential component of the acceleration vector is simply
what you would have thought the acceleration was if you saw the
speedometer and didn’t know you were going around a curve.

Slow down before a turn, not during it. example 8
. When you’re making a turn in your car and you’re afraid you
may skid, isn’t it a good idea to slow down?

. If the turn is an arc of a circle, and you’ve already completed
part of the turn at constant speed without skidding, then the road
and tires are apparently capable of enough static friction to sup-
ply an acceleration of |v|2/r . There is no reason why you would
skid out now if you haven’t already. If you get nervous and brake,
however, then you need to have a tangential acceleration com-
ponent in addition to the radial component you were already able
to produce successfully. This would require an acceleration vec-
tor with a greater magnitude, which in turn would require a larger
force. Static friction might not be able to supply that much force,
and you might skid out. As in the previous example on a similar
topic, the safe thing to do is to approach the turn at a comfortably
low speed.

. Solved problem: A bike race page 228, problem 5
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Summary
Selected Vocabulary
uniform circular
motion . . . . . .

circular motion in which the magnitude of the
velocity vector remains constant

nonuniform circu-
lar motion . . . .

circular motion in which the magnitude of the
velocity vector changes

radial . . . . . . . parallel to the radius of a circle; the in-out
direction

tangential . . . . tangent to the circle, perpendicular to the ra-
dial direction

Notation
ar . . . . . . . . . radial acceleration; the component of the ac-

celeration vector along the in-out direction
at . . . . . . . . . tangential acceleration; the component of the

acceleration vector tangent to the circle

Summary

If an object is to have circular motion, a force must be exerted on
it toward the center of the circle. There is no outward force on the
object; the illusion of an outward force comes from our experiences
in which our point of view was rotating, so that we were viewing
things in a noninertial frame.

An object undergoing uniform circular motion has an inward
acceleration vector of magnitude

|a| = |v|2/r .

In nonuniform circular motion, the radial and tangential compo-
nents of the acceleration vector are

ar = |v|2/r
at = slope of the graph of |v| versus t .
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Problem 5.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 When you’re done using an electric mixer, you can get most
of the batter off of the beaters by lifting them out of the batter with
the motor running at a high enough speed. Let’s imagine, to make
things easier to visualize, that we instead have a piece of tape stuck
to one of the beaters.
(a) Explain why static friction has no effect on whether or not the
tape flies off.
(b) Suppose you find that the tape doesn’t fly off when the motor
is on a low speed, but at a greater speed, the tape won’t stay on.
Why would the greater speed change things?

2 Show that the expression |v|2/r has the units of acceleration.

3 A plane is flown in a loop-the-loop of radius 1.00 km. The
plane starts out flying upside-down, straight and level, then begins
curving up along the circular loop, and is right-side up when it
reaches the top. (The plane may slow down somewhat on the way
up.) How fast must the plane be going at the top if the pilot is to
experience no force from the seat or the seatbelt while at the top of
the loop?

√

4 In this problem, you’ll derive the equation |a| = |v|2/r us-
ing calculus. Instead of comparing velocities at two points in the
particle’s motion and then taking a limit where the points are close
together, you’ll just take derivatives. The particle’s position vector
is r = (r cos θ)x̂ + (r sin θ)ŷ, where x̂ and ŷ are the unit vectors
along the x and y axes. By the definition of radians, the distance
traveled since t = 0 is rθ, so if the particle is traveling at constant
speed v = |v|, we have v = rθ/t.
(a) Eliminate θ to get the particle’s position vector as a function of
time.
(b) Find the particle’s acceleration vector.
(c) Show that the magnitude of the acceleration vector equals v2/r.∫
5 Three cyclists in a race are rounding a semicircular curve.
At the moment depicted, cyclist A is using her brakes to apply a
force of 375 N to her bike. Cyclist B is coasting. Cyclist C is
pedaling, resulting in a force of 375 N on her bike Each cyclist,
with her bike, has a mass of 75 kg. At the instant shown, the
instantaneous speed of all three cyclists is 10 m/s. On the diagram,
draw each cyclist’s acceleration vector with its tail on top of her
present position, indicating the directions and lengths reasonably
accurately. Indicate approximately the consistent scale you are using
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Problem 6.

Problem 7.

Problem 9.

for all three acceleration vectors. Extreme precision is not necessary
as long as the directions are approximately right, and lengths of
vectors that should be equal appear roughly equal, etc. Assume all
three cyclists are traveling along the road all the time, not wandering
across their lane or wiping out and going off the road.

. Solution, p. 283

6 The amusement park ride shown in the figure consists of a
cylindrical room that rotates about its vertical axis. When the ro-
tation is fast enough, a person against the wall can pick his or her
feet up off the floor and remain “stuck” to the wall without falling.
(a) Suppose the rotation results in the person having a speed v. The
radius of the cylinder is r, the person’s mass is m, the downward
acceleration of gravity is g, and the coefficient of static friction be-
tween the person and the wall is µs. Find an equation for the speed,
v, required, in terms of the other variables. (You will find that one
of the variables cancels out.)
(b) Now suppose two people are riding the ride. Huy is wearing
denim, and Gina is wearing polyester, so Huy’s coefficient of static
friction is three times greater. The ride starts from rest, and as it
begins rotating faster and faster, Gina must wait longer before being
able to lift her feet without sliding to the floor. Based on your equa-
tion from part a, how many times greater must the speed be before
Gina can lift her feet without sliding down? . Solution, p. 283 ?

7 An engineer is designing a curved off-ramp for a freeway.
Since the off-ramp is curved, she wants to bank it to make it less
likely that motorists going too fast will wipe out. If the radius of
the curve is r, how great should the banking angle, θ, be so that
for a car going at a speed v, no static friction force whatsoever is
required to allow the car to make the curve? State your answer in
terms of v, r, and g, and show that the mass of the car is irrelevant.

. Solution, p. 283

8 Lionel brand toy trains come with sections of track in standard
lengths and shapes. For circular arcs, the most commonly used
sections have diameters of 662 and 1067 mm at the inside of the outer
rail. The maximum speed at which a train can take the broader
curve without flying off the tracks is 0.95 m/s. At what speed must
the train be operated to avoid derailing on the tighter curve?

√

9 The figure shows a ball on the end of a string of length L
attached to a vertical rod which is spun about its vertical axis by a
motor. The period (time for one rotation) is P .
(a) Analyze the forces in which the ball participates.
(b) Find how the angle θ depends on P , g, and L. [Hints: (1)
Write down Newton’s second law for the vertical and horizontal
components of force and acceleration. This gives two equations,
which can be solved for the two unknowns, θ and the tension in
the string. (2) If you introduce variables like v and r, relate them
to the variables your solution is supposed to contain, and eliminate
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Problem 10.

Problem 11.

Problem 12.

them.]
√

(c) What happens mathematically to your solution if the motor is
run very slowly (very large values of P )? Physically, what do you
think would actually happen in this case?

10 Psychology professor R.O. Dent requests funding for an ex-
periment on compulsive thrill-seeking behavior in hamsters, in which
the subject is to be attached to the end of a spring and whirled
around in a horizontal circle. The spring has equilibrium length b,
and obeys Hooke’s law with spring constant k. It is stiff enough to
keep from bending significantly under the hamster’s weight.
(a) Calculate the length of the spring when it is undergoing steady
circular motion in which one rotation takes a time T . Express your
result in terms of k, b, T , and the hamster’s mass m.

√

(b) The ethics committee somehow fails to veto the experiment, but
the safety committee expresses concern. Why? Does your equa-
tion do anything unusual, or even spectacular, for any particular
value of T? What do you think is the physical significance of this
mathematical behavior?
11 The figure shows an old-fashioned device called a flyball
governor, used for keeping an engine running at the correct speed.
The whole thing rotates about the vertical shaft, and the mass M
is free to slide up and down. This mass would have a connection
(not shown) to a valve that controlled the engine. If, for instance,
the engine ran too fast, the mass would rise, causing the engine to
slow back down.
(a) Show that in the special case of a = 0, the angle θ is given by

θ = cos−1

(
g(m+M)P 2

4π2mL

)
,

where P is the period of rotation (time required for one complete
rotation).
(b) There is no closed-form solution for θ in the general case where
a is not zero. However, explain how the undesirable low-speed be-
havior of the a = 0 device would be improved by making a nonzero.

?
12 The figure shows two blocks of masses m1 and m2 sliding
in circles on a frictionless table. Find the tension in the strings if
the period of rotation (time required for one complete rotation) is
P .

√

13 The acceleration of an object in uniform circular motion can
be given either by |a| = |v|2/r or, equivalently, by |a| = 4π2r/T 2,
where T is the time required for one cycle (example 5 on page 224).
Person A says based on the first equation that the acceleration in
circular motion is greater when the circle is smaller. Person B, ar-
guing from the second equation, says that the acceleration is smaller
when the circle is smaller. Rewrite the two statements so that they
are less misleading, eliminating the supposed paradox. [Based on a
problem by Arnold Arons.]

230 Chapter 9 Circular Motion



14 The bright star Sirius has a mass of 4.02 × 1030 kg and lies
at a distance of 8.1× 1016 m from our solar system. Suppose you’re
standing on a merry-go-round carousel rotating with a period of 10
seconds. You adopt a rotating, noninertial frame of reference, in
which the carousel is at rest, and the universe is spinning around it.
If you drop a coin, you see it accelerate horizontally away from the
axis, and you interpret this is the result of some horizontal force.
This force does not actually exist; it only seems to exist because
you’re insisting on using a noninertial frame. Similarly, calculate
the force that seems to act on Sirius in this frame of reference.
Comment on the physical plausibility of this force, and on what
object could be exerting it.

√
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a / Johannes Kepler found a
mathematical description of the
motion of the planets, which led
to Newton’s theory of gravity.

Gravity is the only really important force on the cosmic scale. This false-
color representation of saturn’s rings was made from an image sent back
by the Voyager 2 space probe. The rings are composed of innumerable
tiny ice particles orbiting in circles under the influence of saturn’s gravity.

Chapter 10

Gravity

Cruise your radio dial today and try to find any popular song that
would have been imaginable without Louis Armstrong. By introduc-
ing solo improvisation into jazz, Armstrong took apart the jigsaw
puzzle of popular music and fit the pieces back together in a dif-
ferent way. In the same way, Newton reassembled our view of the
universe. Consider the titles of some recent physics books written
for the general reader: The God Particle, Dreams of a Final The-
ory. When the subatomic particle called the neutrino was recently
proven for the first time to have mass, specialists in cosmology be-
gan discussing seriously what effect this would have on calculations
of the ultimate fate of the universe: would the neutrinos’ mass cause
enough extra gravitational attraction to make the universe eventu-
ally stop expanding and fall back together? Without Newton, such
attempts at universal understanding would not merely have seemed
a little pretentious, they simply would not have occurred to anyone.

This chapter is about Newton’s theory of gravity, which he used
to explain the motion of the planets as they orbited the sun. Whereas
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b / Tycho Brahe made his name
as an astronomer by showing that
the bright new star, today called
a supernova, that appeared in
the skies in 1572 was far beyond
the Earth’s atmosphere. This,
along with Galileo’s discovery of
sunspots, showed that contrary
to Aristotle, the heavens were
not perfect and unchanging.
Brahe’s fame as an astronomer
brought him patronage from King
Frederick II, allowing him to carry
out his historic high-precision
measurements of the planets’
motions. A contradictory charac-
ter, Brahe enjoyed lecturing other
nobles about the evils of dueling,
but had lost his own nose in a
youthful duel and had it replaced
with a prosthesis made of an
alloy of gold and silver. Willing to
endure scandal in order to marry
a peasant, he nevertheless used
the feudal powers given to him by
the king to impose harsh forced
labor on the inhabitants of his
parishes. The result of their work,
an Italian-style palace with an
observatory on top, surely ranks
as one of the most luxurious
science labs ever built. He died
of a ruptured bladder after falling
from a wagon on the way home
from a party — in those days, it
was considered rude to leave the
dinner table to relieve oneself.

this book has concentrated on Newton’s laws of motion, leaving
gravity as a dessert, Newton tosses off the laws of motion in the
first 20 pages of the Principia Mathematica and then spends the
next 130 discussing the motion of the planets. Clearly he saw this
as the crucial scientific focus of his work. Why? Because in it he
showed that the same laws of motion applied to the heavens as to
the earth, and that the gravitational force that made an apple fall
was the same as the force that kept the earth’s motion from carrying
it away from the sun. What was radical about Newton was not his
laws of motion but his concept of a universal science of physics.

10.1 Kepler’s Laws
Newton wouldn’t have been able to figure out why the planets

move the way they do if it hadn’t been for the astronomer Tycho
Brahe (1546-1601) and his protege Johannes Kepler (1571-1630),
who together came up with the first simple and accurate description
of how the planets actually do move. The difficulty of their task is
suggested by figure c, which shows how the relatively simple orbital
motions of the earth and Mars combine so that as seen from earth
Mars appears to be staggering in loops like a drunken sailor.

c / As the Earth and Mars revolve around the sun at different rates,
the combined effect of their motions makes Mars appear to trace a
strange, looped path across the background of the distant stars.

Brahe, the last of the great naked-eye astronomers, collected ex-
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tensive data on the motions of the planets over a period of many
years, taking the giant step from the previous observations’ accuracy
of about 10 minutes of arc (10/60 of a degree) to an unprecedented
1 minute. The quality of his work is all the more remarkable consid-
ering that his observatory consisted of four giant brass protractors
mounted upright in his castle in Denmark. Four different observers
would simultaneously measure the position of a planet in order to
check for mistakes and reduce random errors.

With Brahe’s death, it fell to his former assistant Kepler to try
to make some sense out of the volumes of data. Kepler, in con-
tradiction to his late boss, had formed a prejudice, a correct one
as it turned out, in favor of the theory that the earth and planets
revolved around the sun, rather than the earth staying fixed and
everything rotating about it. Although motion is relative, it is not
just a matter of opinion what circles what. The earth’s rotation
and revolution about the sun make it a noninertial reference frame,
which causes detectable violations of Newton’s laws when one at-
tempts to describe sufficiently precise experiments in the earth-fixed
frame. Although such direct experiments were not carried out until
the 19th century, what convinced everyone of the sun-centered sys-
tem in the 17th century was that Kepler was able to come up with
a surprisingly simple set of mathematical and geometrical rules for
describing the planets’ motion using the sun-centered assumption.
After 900 pages of calculations and many false starts and dead-end
ideas, Kepler finally synthesized the data into the following three
laws:

Kepler’s elliptical orbit law
The planets orbit the sun in elliptical orbits with the sun at
one focus.

Kepler’s equal-area law
The line connecting a planet to the sun sweeps out equal areas
in equal amounts of time.

Kepler’s law of periods
The time required for a planet to orbit the sun, called its
period, is proportional to the long axis of the ellipse raised to
the 3/2 power. The constant of proportionality is the same
for all the planets.

Although the planets’ orbits are ellipses rather than circles, most
are very close to being circular. The earth’s orbit, for instance, is
only flattened by 1.7% relative to a circle. In the special case of a
planet in a circular orbit, the two foci (plural of “focus”) coincide
at the center of the circle, and Kepler’s elliptical orbit law thus says
that the circle is centered on the sun. The equal-area law implies
that a planet in a circular orbit moves around the sun with constant
speed. For a circular orbit, the law of periods then amounts to a
statement that the time for one orbit is proportional to r3/2, where

Section 10.1 Kepler’s Laws 235



d / An ellipse is a circle that
has been distorted by shrinking
and stretching along perpendicu-
lar axes.

e / An ellipse can be con-
structed by tying a string to two
pins and drawing like this with the
pencil stretching the string taut.
Each pin constitutes one focus of
the ellipse.

f / If the time interval taken
by the planet to move from P to Q
is equal to the time interval from
R to S, then according to Kepler’s
equal-area law, the two shaded
areas are equal. The planet
is moving faster during interval
RS than it did during PQ, which
Newton later determined was due
to the sun’s gravitational force
accelerating it. The equal-area
law predicts exactly how much it
will speed up.

r is the radius. If all the planets were moving in their orbits at the
same speed, then the time for one orbit would simply depend on
the circumference of the circle, so it would only be proportional to
r to the first power. The more drastic dependence on r3/2 means
that the outer planets must be moving more slowly than the inner
planets.

10.2 Newton’s Law of Gravity
The sun’s force on the planets obeys an inverse square law.

Kepler’s laws were a beautifully simple explanation of what the
planets did, but they didn’t address why they moved as they did.
Did the sun exert a force that pulled a planet toward the center of
its orbit, or, as suggested by Descartes, were the planets circulating
in a whirlpool of some unknown liquid? Kepler, working in the
Aristotelian tradition, hypothesized not just an inward force exerted
by the sun on the planet, but also a second force in the direction
of motion to keep the planet from slowing down. Some speculated
that the sun attracted the planets magnetically.

Once Newton had formulated his laws of motion and taught
them to some of his friends, they began trying to connect them
to Kepler’s laws. It was clear now that an inward force would be
needed to bend the planets’ paths. This force was presumably an
attraction between the sun and each planet. (Although the sun does
accelerate in response to the attractions of the planets, its mass is so
great that the effect had never been detected by the prenewtonian
astronomers.) Since the outer planets were moving slowly along
more gently curving paths than the inner planets, their accelerations
were apparently less. This could be explained if the sun’s force was
determined by distance, becoming weaker for the farther planets.
Physicists were also familiar with the noncontact forces of electricity
and magnetism, and knew that they fell off rapidly with distance,
so this made sense.

In the approximation of a circular orbit, the magnitude of the
sun’s force on the planet would have to be

[1] F = ma = mv2/r .

Now although this equation has the magnitude, v, of the velocity
vector in it, what Newton expected was that there would be a more
fundamental underlying equation for the force of the sun on a planet,
and that that equation would involve the distance, r, from the sun
to the object, but not the object’s speed, v — motion doesn’t make
objects lighter or heavier.

self-check A
If eq. [1] really was generally applicable, what would happen to an
object released at rest in some empty region of the solar system? .

Answer, p. 274
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g / The moon’s acceleration
is 602 = 3600 times smaller than
the apple’s.

Equation [1] was thus a useful piece of information which could
be related to the data on the planets simply because the planets
happened to be going in nearly circular orbits, but Newton wanted
to combine it with other equations and eliminate v algebraically in
order to find a deeper truth.

To eliminate v, Newton used the equation

[2] v =
circumference

T
=

2πr

T
.

Of course this equation would also only be valid for planets in nearly
circular orbits. Plugging this into eq. [1] to eliminate v gives

[3] F =
4π2mr

T 2
.

This unfortunately has the side-effect of bringing in the period, T ,
which we expect on similar physical grounds will not occur in the
final answer. That’s where the circular-orbit case, T ∝ r3/2, of
Kepler’s law of periods comes in. Using it to eliminate T gives a
result that depends only on the mass of the planet and its distance
from the sun:

F ∝ m/r2 . [force of the sun on a planet of mass

m at a distance r from the sun; same

proportionality constant for all the planets]

(Since Kepler’s law of periods is only a proportionality, the final
result is a proportionality rather than an equation, so there is no
point in hanging on to the factor of 4π2.)

As an example, the “twin planets” Uranus and Neptune have
nearly the same mass, but Neptune is about twice as far from the
sun as Uranus, so the sun’s gravitational force on Neptune is about
four times smaller.

self-check B
Fill in the steps leading from equation [3] to F ∝ m/r2. . Answer, p.
275

The forces between heavenly bodies are the same type of
force as terrestrial gravity.

OK, but what kind of force was it? It probably wasn’t magnetic,
since magnetic forces have nothing to do with mass. Then came
Newton’s great insight. Lying under an apple tree and looking up
at the moon in the sky, he saw an apple fall. Might not the earth
also attract the moon with the same kind of gravitational force?
The moon orbits the earth in the same way that the planets orbit
the sun, so maybe the earth’s force on the falling apple, the earth’s
force on the moon, and the sun’s force on a planet were all the same
type of force.
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There was an easy way to test this hypothesis numerically. If it
was true, then we would expect the gravitational forces exerted by
the earth to follow the same F ∝ m/r2 rule as the forces exerted by
the sun, but with a different constant of proportionality appropriate
to the earth’s gravitational strength. The issue arises now of how to
define the distance, r, between the earth and the apple. An apple
in England is closer to some parts of the earth than to others, but
suppose we take r to be the distance from the center of the earth to
the apple, i.e., the radius of the earth. (The issue of how to measure
r did not arise in the analysis of the planets’ motions because the
sun and planets are so small compared to the distances separating
them.) Calling the proportionality constant k, we have

Fearth on apple = k mapple/r
2
earth

Fearth on moon = k mmoon/d
2
earth-moon .

Newton’s second law says a = F/m, so

aapple = k / r2
earth

amoon = k / d2
earth-moon .

The Greek astronomer Hipparchus had already found 2000 years
before that the distance from the earth to the moon was about 60
times the radius of the earth, so if Newton’s hypothesis was right,
the acceleration of the moon would have to be 602 = 3600 times less
than the acceleration of the falling apple.

Applying a = v2/r to the acceleration of the moon yielded an
acceleration that was indeed 3600 times smaller than 9.8 m/s2, and
Newton was convinced he had unlocked the secret of the mysterious
force that kept the moon and planets in their orbits.

Newton’s law of gravity

The proportionality F ∝ m/r2 for the gravitational force on an
object of mass m only has a consistent proportionality constant for
various objects if they are being acted on by the gravity of the same
object. Clearly the sun’s gravitational strength is far greater than
the earth’s, since the planets all orbit the sun and do not exhibit
any very large accelerations caused by the earth (or by one another).
What property of the sun gives it its great gravitational strength?
Its great volume? Its great mass? Its great temperature? Newton
reasoned that if the force was proportional to the mass of the object
being acted on, then it would also make sense if the determining
factor in the gravitational strength of the object exerting the force
was its own mass. Assuming there were no other factors affecting
the gravitational force, then the only other thing needed to make
quantitative predictions of gravitational forces would be a propor-
tionality constant. Newton called that proportionality constant G,
so here is the complete form of the law of gravity he hypothesized.
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h / Students often have a
hard time understanding the
physical meaning of G. It’s just
a proportionality constant that
tells you how strong gravitational
forces are. If you could change it,
all the gravitational forces all over
the universe would get stronger
or weaker. Numerically, the
gravitational attraction between
two 1-kg masses separated by a
distance of 1 m is 6.67×10−11 N,
and this is what G is in SI units.

i / Example 3. Computer-
enhanced images of Pluto and
Charon, taken by the Hubble
Space Telescope.

Newton’s law of gravity

F =
Gm1m2

r2
[gravitational force between objects of mass

m1 and m2, separated by a distance r; r is not

the radius of anything ]

Newton conceived of gravity as an attraction between any two
masses in the universe. The constant G tells us how many newtons
the attractive force is for two 1-kg masses separated by a distance
of 1 m. The experimental determination of G in ordinary units
(as opposed to the special, nonmetric, units used in astronomy)
is described in section 10.5. This difficult measurement was not
accomplished until long after Newton’s death.

The units of G example 1
. What are the units of G?

. Solving for G in Newton’s law of gravity gives

G =
Fr2

m1m2
,

so the units of G must be N·m2/kg2. Fully adorned with units, the
value of G is 6.67× 10−11 N·m2/kg2.

Newton’s third law example 2
. Is Newton’s law of gravity consistent with Newton’s third law?

. The third law requires two things. First, m1’s force on m2 should
be the same as m2’s force on m1. This works out, because the
product m1m2 gives the same result if we interchange the labels 1
and 2. Second, the forces should be in opposite directions. This
condition is also satisfied, because Newton’s law of gravity refers
to an attraction: each mass pulls the other toward itself.

Pluto and Charon example 3
. Pluto’s moon Charon is unusually large considering Pluto’s size,
giving them the character of a double planet. Their masses are
1.25×1022 and 1.9x1021 kg, and their average distance from one
another is 1.96× 104 km. What is the gravitational force between
them?

. If we want to use the value of G expressed in SI (meter-kilogram-
second) units, we first have to convert the distance to 1.96 ×
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j / The conic sections are the
curves made by cutting the
surface of an infinite cone with a
plane.

k / An imaginary cannon able
to shoot cannonballs at very high
speeds is placed on top of an
imaginary, very tall mountain
that reaches up above the at-
mosphere. Depending on the
speed at which the ball is fired,
it may end up in a tightly curved
elliptical orbit, 1, a circular orbit,
2, a bigger elliptical orbit, 3, or a
nearly straight hyperbolic orbit, 4.

107 m. The force is(
6.67× 10−11 N·m2/kg2

) (
1.25× 1022 kg

) (
1.9× 1021 kg

)
(
1.96× 107 m

)2

= 4.1× 1018 N

The proportionality to 1/r2 in Newton’s law of gravity was not
entirely unexpected. Proportionalities to 1/r2 are found in many
other phenomena in which some effect spreads out from a point.
For instance, the intensity of the light from a candle is proportional
to 1/r2, because at a distance r from the candle, the light has to
be spread out over the surface of an imaginary sphere of area 4πr2.
The same is true for the intensity of sound from a firecracker, or the
intensity of gamma radiation emitted by the Chernobyl reactor. It’s
important, however, to realize that this is only an analogy. Force
does not travel through space as sound or light does, and force is
not a substance that can be spread thicker or thinner like butter on
toast.

Although several of Newton’s contemporaries had speculated
that the force of gravity might be proportional to 1/r2, none of
them, even the ones who had learned Newton’s laws of motion, had
had any luck proving that the resulting orbits would be ellipses, as
Kepler had found empirically. Newton did succeed in proving that
elliptical orbits would result from a 1/r2 force, but we postpone the
proof until the end of the next volume of the textbook because it
can be accomplished much more easily using the concepts of energy
and angular momentum.

Newton also predicted that orbits in the shape of hyperbolas
should be possible, and he was right. Some comets, for instance,
orbit the sun in very elongated ellipses, but others pass through
the solar system on hyperbolic paths, never to return. Just as the
trajectory of a faster baseball pitch is flatter than that of a more
slowly thrown ball, so the curvature of a planet’s orbit depends on
its speed. A spacecraft can be launched at relatively low speed,
resulting in a circular orbit about the earth, or it can be launched
at a higher speed, giving a more gently curved ellipse that reaches
farther from the earth, or it can be launched at a very high speed
which puts it in an even less curved hyperbolic orbit. As you go
very far out on a hyperbola, it approaches a straight line, i.e., its
curvature eventually becomes nearly zero.

Newton also was able to prove that Kepler’s second law (sweep-
ing out equal areas in equal time intervals) was a logical consequence
of his law of gravity. Newton’s version of the proof is moderately
complicated, but the proof becomes trivial once you understand the
concept of angular momentum, which will be covered later in the
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course. The proof will therefore be deferred until section 5.7 of book
2.

self-check C
Which of Kepler’s laws would it make sense to apply to hyperbolic or-
bits? . Answer, p.
275

. Solved problem: Visiting Ceres page 252, problem 10

. Solved problem: Geosynchronous orbit page 254, problem 16

. Solved problem: Why a equals g page 252, problem 11

. Solved problem: Ida and Dactyl page 253, problem 12

. Solved problem: Another solar system page 253, problem 15

. Solved problem: Weight loss page 254, problem 19

. Solved problem: The receding moon page 254, problem 17

Discussion Questions

A How could Newton find the speed of the moon to plug in to a =
v2/r?

B Two projectiles of different mass shot out of guns on the surface of
the earth at the same speed and angle will follow the same trajectories,
assuming that air friction is negligible. (You can verify this by throwing two
objects together from your hand and seeing if they separate or stay side
by side.) What corresponding fact would be true for satellites of the earth
having different masses?

C What is wrong with the following statement? “A comet in an elliptical
orbit speeds up as it approaches the sun, because the sun’s force on it is
increasing.”

D Why would it not make sense to expect the earth’s gravitational force
on a bowling ball to be inversely proportional to the square of the distance
between their surfaces rather than their centers?

E Does the earth accelerate as a result of the moon’s gravitational
force on it? Suppose two planets were bound to each other gravitationally
the way the earth and moon are, but the two planets had equal masses.
What would their motion be like?

F Spacecraft normally operate by firing their engines only for a few
minutes at a time, and an interplanetary probe will spend months or years
on its way to its destination without thrust. Suppose a spacecraft is in a
circular orbit around Mars, and it then briefly fires its engines in reverse,
causing a sudden decrease in speed. What will this do to its orbit? What
about a forward thrust?

10.3 Apparent Weightlessness
If you ask somebody at the bus stop why astronauts are weightless,
you’ll probably get one of the following two incorrect answers:
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l / Gravity only appears to
pull straight down because the
near perfect symmetry of the
earth makes the sideways com-
ponents of the total force on an
object cancel almost exactly. If
the symmetry is broken, e.g., by
a dense mineral deposit, the total
force is a little off to the side.

(1) They’re weightless because they’re so far from the earth.

(2) They’re weightless because they’re moving so fast.

The first answer is wrong, because the vast majority of astro-
nauts never get more than a thousand miles from the earth’s surface.
The reduction in gravity caused by their altitude is significant, but
not 100%. The second answer is wrong because Newton’s law of
gravity only depends on distance, not speed.

The correct answer is that astronauts in orbit around the earth
are not really weightless at all. Their weightlessness is only appar-
ent. If there was no gravitational force on the spaceship, it would
obey Newton’s first law and move off on a straight line, rather than
orbiting the earth. Likewise, the astronauts inside the spaceship are
in orbit just like the spaceship itself, with the earth’s gravitational
force continually twisting their velocity vectors around. The reason
they appear to be weightless is that they are in the same orbit as
the spaceship, so although the earth’s gravity curves their trajectory
down toward the deck, the deck drops out from under them at the
same rate.

Apparent weightlessness can also be experienced on earth. Any
time you jump up in the air, you experience the same kind of ap-
parent weightlessness that the astronauts do. While in the air, you
can lift your arms more easily than normal, because gravity does not
make them fall any faster than the rest of your body, which is falling
out from under them. The Russian air force now takes rich foreign
tourists up in a big cargo plane and gives them the feeling of weight-
lessness for a short period of time while the plane is nose-down and
dropping like a rock.

10.4 Vector Addition of Gravitational Forces
Pick a flower on earth and you move the farthest star.

Paul Dirac
When you stand on the ground, which part of the earth is pulling

down on you with its gravitational force? Most people are tempted
to say that the effect only comes from the part directly under you,
since gravity always pulls straight down. Here are three observations
that might help to change your mind:

• If you jump up in the air, gravity does not stop affecting you
just because you are not touching the earth: gravity is a non-
contact force. That means you are not immune from the grav-
ity of distant parts of our planet just because you are not
touching them.

• Gravitational effects are not blocked by intervening matter.
For instance, in an eclipse of the moon, the earth is lined up
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directly between the sun and the moon, but only the sun’s light
is blocked from reaching the moon, not its gravitational force
— if the sun’s gravitational force on the moon was blocked in
this situation, astronomers would be able to tell because the
moon’s acceleration would change suddenly. A more subtle
but more easily observable example is that the tides are caused
by the moon’s gravity, and tidal effects can occur on the side
of the earth facing away from the moon. Thus, far-off parts
of the earth are not prevented from attracting you with their
gravity just because there is other stuff between you and them.

• Prospectors sometimes search for underground deposits of dense
minerals by measuring the direction of the local gravitational
forces, i.e., the direction things fall or the direction a plumb
bob hangs. For instance, the gravitational forces in the region
to the west of such a deposit would point along a line slightly
to the east of the earth’s center. Just because the total grav-
itational force on you points down, that doesn’t mean that
only the parts of the earth directly below you are attracting
you. It’s just that the sideways components of all the force
vectors acting on you come very close to canceling out.

A cubic centimeter of lava in the earth’s mantle, a grain of silica
inside Mt. Kilimanjaro, and a flea on a cat in Paris are all attracting
you with their gravity. What you feel is the vector sum of all the
gravitational forces exerted by all the atoms of our planet, and for
that matter by all the atoms in the universe.

When Newton tested his theory of gravity by comparing the
orbital acceleration of the moon to the acceleration of a falling apple
on earth, he assumed he could compute the earth’s force on the
apple using the distance from the apple to the earth’s center. Was
he wrong? After all, it isn’t just the earth’s center attracting the
apple, it’s the whole earth. A kilogram of dirt a few feet under his
backyard in England would have a much greater force on the apple
than a kilogram of molten rock deep under Australia, thousands of
miles away. There’s really no obvious reason why the force should
come out right if you just pretend that the earth’s whole mass is
concentrated at its center. Also, we know that the earth has some
parts that are more dense, and some parts that are less dense. The
solid crust, on which we live, is considerably less dense than the
molten rock on which it floats. By all rights, the computation of the
vector sum of all the forces exerted by all the earth’s parts should
be a horrendous mess.

Actually, Newton had sound mathematical reasons for treating
the earth’s mass as if it was concentrated at its center. First, al-
though Newton no doubt suspected the earth’s density was nonuni-
form, he knew that the direction of its total gravitational force was
very nearly toward the earth’s center. That was strong evidence
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m / An object outside a spherical
shell of mass will feel gravitational
forces from every part of the shell
— stronger forces from the closer
parts, and weaker ones from the
parts farther away. The shell
theorem states that the vector
sum of all the forces is the same
as if all the mass had been
concentrated at the center of the
shell.

that the distribution of mass was very symmetric, so that we can
think of the earth as being made of many layers, like an onion,
with each layer having constant density throughout. (Today there
is further evidence for symmetry based on measurements of how the
vibrations from earthquakes and nuclear explosions travel through
the earth.) Newton then concentrated on the gravitational forces
exerted by a single such thin shell, and proved the following math-
ematical theorem, known as the shell theorem:

If an object lies outside a thin, spherical shell of mass, then
the vector sum of all the gravitational forces exerted by all the
parts of the shell is the same as if the shell’s mass had been
concentrated at its center. If the object lies inside the shell,
then all the gravitational forces cancel out exactly.

For terrestrial gravity, each shell acts as though its mass was con-
centrated at the earth’s center, so the final result is the same as if
the earth’s whole mass was concentrated at its center.

The second part of the shell theorem, about the gravitational
forces canceling inside the shell, is a little surprising. Obviously the
forces would all cancel out if you were at the exact center of a shell,
but why should they still cancel out perfectly if you are inside the
shell but off-center? The whole idea might seem academic, since we
don’t know of any hollow planets in our solar system that astronauts
could hope to visit, but actually it’s a useful result for understanding
gravity within the earth, which is an important issue in geology. It
doesn’t matter that the earth is not actually hollow. In a mine shaft
at a depth of, say, 2 km, we can use the shell theorem to tell us that
the outermost 2 km of the earth has no net gravitational effect, and
the gravitational force is the same as what would be produced if the
remaining, deeper, parts of the earth were all concentrated at its
center.

self-check D
Suppose you’re at the bottom of a deep mineshaft, which means you’re
still quite far from the center of the earth. The shell theorem says that
the shell of mass you’ve gone inside exerts zero total force on you.
Discuss which parts of the shell are attracting you in which directions,
and how strong these forces are. Explain why it’s at least plausible that
they cancel. . Answer, p. 275

Discussion Questions

A If you hold an apple, does the apple exert a gravitational force on
the earth? Is it much weaker than the earth’s gravitational force on the
apple? Why doesn’t the earth seem to accelerate upward when you drop
the apple?

B When astronauts travel from the earth to the moon, how does the
gravitational force on them change as they progress?

C How would the gravity in the first-floor lobby of a massive skyscraper
compare with the gravity in an open field outside of the city?
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o / A simplified version of
Cavendish’s apparatus.

D In a few billion years, the sun will start undergoing changes that will
eventually result in its puffing up into a red giant star. (Near the beginning
of this process, the earth’s oceans will boil off, and by the end, the sun
will probably swallow the earth completely.) As the sun’s surface starts to
get closer and close to the earth, how will the earth’s orbit be affected?

10.5 Weighing the Earth
Let’s look more closely at the application of Newton’s law of gravity
to objects on the earth’s surface. Since the earth’s gravitational
force is the same as if its mass was all concentrated at its center,
the force on a falling object of mass m is given by

F = GMearth m / r2
earth .

The object’s acceleration equals F/m, so the object’s mass cancels
out and we get the same acceleration for all falling objects, as we
knew we should:

g = GMearth / r
2
earth .

n / Cavendish’s apparatus. The two large balls are fixed in place,
but the rod from which the two small balls hang is free to twist under the
influence of the gravitational forces.

Newton knew neither the mass of the earth nor a numerical value
for the constant G. But if someone could measure G, then it would
be possible for the first time in history to determine the mass of the
earth! The only way to measure G is to measure the gravitational
force between two objects of known mass, but that’s an exceedingly
difficult task, because the force between any two objects of ordinary
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size is extremely small. The English physicist Henry Cavendish was
the first to succeed, using the apparatus shown in figures n and o.
The two larger balls were lead spheres 8 inches in diameter, and each
one attracted the small ball near it. The two small balls hung from
the ends of a horizontal rod, which itself hung by a thin thread. The
frame from which the larger balls hung could be rotated by hand
about a vertical axis, so that for instance the large ball on the right
would pull its neighboring small ball toward us and while the small
ball on the left would be pulled away from us. The thread from
which the small balls hung would thus be twisted through a small
angle, and by calibrating the twist of the thread with known forces,
the actual gravitational force could be determined. Cavendish set
up the whole apparatus in a room of his house, nailing all the doors
shut to keep air currents from disturbing the delicate apparatus.
The results had to be observed through telescopes stuck through
holes drilled in the walls. Cavendish’s experiment provided the first
numerical values for G and for the mass of the earth. The presently
accepted value of G is 6.67× 10−11 N·m2/kg2.

Knowing G not only allowed the determination of the earth’s
mass but also those of the sun and the other planets. For instance,
by observing the acceleration of one of Jupiter’s moons, we can infer
the mass of Jupiter. The following table gives the distances of the
planets from the sun and the masses of the sun and planets. (Other
data are given in the back of the book.)

average distance from
the sun, in units of the
earth’s average distance
from the sun

mass, in units of the
earth’s mass

sun — 330,000

mercury 0.38 0.056

venus 0.72 0.82

earth 1 1

mars 1.5 0.11

jupiter 5.2 320

saturn 9.5 95

uranus 19 14

neptune 30 17

pluto 39 0.002

Discussion Questions

A It would have been difficult for Cavendish to start designing an
experiment without at least some idea of the order of magnitude of G.
How could he estimate it in advance to within a factor of 10?

B Fill in the details of how one would determine Jupiter’s mass by
observing the acceleration of one of its moons. Why is it only necessary
to know the acceleration of the moon, not the actual force acting on it?
Why don’t we need to know the mass of the moon? What about a planet
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that has no moons, such as Venus — how could its mass be found?

C The gravitational constant G is very difficult to measure accu-
rately, and is the least accurately known of all the fundamental numbers
of physics such as the speed of light, the mass of the electron, etc. But
that’s in the mks system, based on the meter as the unit of length, the
kilogram as the unit of mass, and the second as the unit of distance. As-
tronomers sometimes use a different system of units, in which the unit of
distance, called the astronomical unit or a.u., is the radius of the earth’s
orbit, the unit of mass is the mass of the sun, and the unit of time is the
year (i.e., the time required for the earth to orbit the sun). In this system
of units, G has a precise numerical value simply as a matter of definition.
What is it?

10.6 ? Evidence for Repulsive Gravity
Until recently, physicists thought they understood gravity fairly
well. Einstein had modified Newton’s theory, but certain charac-
teristrics of gravitational forces were firmly established. For one
thing, they were always attractive. If gravity always attracts, then
it is logical to ask why the universe doesn’t collapse. Newton had
answered this question by saying that if the universe was infinite in
all directions, then it would have no geometric center toward which
it would collapse; the forces on any particular star or planet ex-
erted by distant parts of the universe would tend to cancel out by
symmetry. More careful calculations, however, show that Newton’s
universe would have a tendency to collapse on smaller scales: any
part of the universe that happened to be slightly more dense than
average would contract further, and this contraction would result
in stronger gravitational forces, which would cause even more rapid
contraction, and so on.

When Einstein overhauled gravity, the same problem reared its
ugly head. Like Newton, Einstein was predisposed to believe in a
universe that was static, so he added a special repulsive term to his
equations, intended to prevent a collapse. This term was not asso-
ciated with any attraction of mass for mass, but represented merely
an overall tendency for space itself to expand unless restrained by
the matter that inhabited it. It turns out that Einstein’s solution,
like Newton’s, is unstable. Furthermore, it was soon discovered
observationally that the universe was expanding, and this was in-
terpreted by creating the Big Bang model, in which the universe’s
current expansion is the aftermath of a fantastically hot explosion.1

An expanding universe, unlike a static one, was capable of being ex-
plained with Einstein’s equations, without any repulsion term. The
universe’s expansion would simply slow down over time due to the
attractive gravitational forces. After these developments, Einstein
said woefully that adding the repulsive term, known as the cosmo-
logical constant, had been the greatest blunder of his life.

1Book 3, section 3.5, presents some of the evidence for the Big Bang.
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This was the state of things until 1999, when evidence began to
turn up that the universe’s expansion has been speeding up rather
than slowing down! The first evidence came from using a telescope
as a sort of time machine: light from a distant galaxy may have
taken billions of years to reach us, so we are seeing it as it was far
in the past. Looking back in time, astronomers saw the universe
expanding at speeds that ware lower, rather than higher. At first
they were mortified, since this was exactly the opposite of what had
been expected. The statistical quality of the data was also not good
enough to constute ironclad proof, and there were worries about sys-
tematic errors. The case for an accelerating expansion has however
been nailed down by high-precision mapping of the dim, sky-wide
afterglow of the Big Bang, known as the cosmic microwave back-
ground. Some theorists have proposed reviving Einstein’s cosmo-
logical constant to account for the acceleration, while others believe
it is evidence for a mysterious form of matter which exhibits gravi-
tational repulsion. The generic term for this unknown stuff is “dark
energy.”

As of 2008, most of the remaining doubt about the repulsive ef-
fect has been dispelled. During the past decade or so, astronomers
consider themselves to have entered a new era of high-precision cos-
mology. The cosmic microwave background measurements, for ex-
ample, have measured the age of the universe to be 13.7±0.2 billion
years, a figure that could previously be stated only as a fuzzy range
from 10 to 20 billion. We know that only 4% of the universe is
atoms, with another 23% consisting of unknown subatomic parti-
cles, and 73% of dark energy. It’s more than a little ironic to know
about so many things with such high precision, and yet to know
virtually nothing about their nature. For instance, we know that
precisely 96% of the universe is something other than atoms, but we
know precisely nothing about what that something is.

p / The WMAP probe’s map of the
cosmic microwave background is
like a “baby picture” of the uni-
verse.
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Summary
Selected Vocabulary
ellipse . . . . . . . a flattened circle; one of the conic sections
conic section . . . a curve formed by the intersection of a plane

and an infinite cone
hyperbola . . . . another conic section; it does not close back

on itself
period . . . . . . . the time required for a planet to complete one

orbit; more generally, the time for one repeti-
tion of some repeating motion

focus . . . . . . . one of two special points inside an ellipse: the
ellipse consists of all points such that the sum
of the distances to the two foci equals a certain
number; a hyperbola also has a focus

Notation
G . . . . . . . . . the constant of proportionality in Newton’s

law of gravity; the gravitational force of at-
traction between two 1-kg spheres at a center-
to-center distance of 1 m

Summary

Kepler deduced three empirical laws from data on the motion of
the planets:

Kepler’s elliptical orbit law: The planets orbit the sun in ellip-
tical orbits with the sun at one focus.

Kepler’s equal-area law: The line connecting a planet to the sun
sweeps out equal areas in equal amounts of time.

Kepler’s law of periods: The time required for a planet to orbit
the sun is proportional to the long axis of the ellipse raised to
the 3/2 power. The constant of proportionality is the same
for all the planets.

Newton was able to find a more fundamental explanation for these
laws. Newton’s law of gravity states that the magnitude of the
attractive force between any two objects in the universe is given by

F = Gm1m2/r
2 .

Weightlessness of objects in orbit around the earth is only appar-
ent. An astronaut inside a spaceship is simply falling along with
the spaceship. Since the spaceship is falling out from under the as-
tronaut, it appears as though there was no gravity accelerating the
astronaut down toward the deck.

Gravitational forces, like all other forces, add like vectors. A
gravitational force such as we ordinarily feel is the vector sum of all
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the forces exerted by all the parts of the earth. As a consequence of
this, Newton proved the shell theorem for gravitational forces:

If an object lies outside a thin, uniform shell of mass, then the
vector sum of all the gravitational forces exerted by all the parts of
the shell is the same as if all the shell’s mass was concentrated at its
center. If the object lies inside the shell, then all the gravitational
forces cancel out exactly.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Roy has a mass of 60 kg. Laurie has a mass of 65 kg. They
are 1.5 m apart.
(a) What is the magnitude of the gravitational force of the earth on
Roy?
(b) What is the magnitude of Roy’s gravitational force on the earth?
(c) What is the magnitude of the gravitational force between Roy
and Laurie?
(d) What is the magnitude of the gravitational force between Laurie
and the sun?

√

2 During a solar eclipse, the moon, earth and sun all lie on
the same line, with the moon between the earth and sun. Define
your coordinates so that the earth and moon lie at greater x values
than the sun. For each force, give the correct sign as well as the
magnitude. (a) What force is exerted on the moon by the sun? (b)
On the moon by the earth? (c) On the earth by the sun? (d) What
total force is exerted on the sun? (e) On the moon? (f) On the
earth?

√

3 Suppose that on a certain day there is a crescent moon, and
you can tell by the shape of the crescent that the earth, sun and
moon form a triangle with a 135 ◦interior angle at the moon’s corner.
What is the magnitude of the total gravitational force of the earth
and the sun on the moon?

√

Problem 3.

4 How high above the Earth’s surface must a rocket be in order
to have 1/100 the weight it would have at the surface? Express your
answer in units of the radius of the Earth.

√

5 The star Lalande 21185 was found in 1996 to have two planets
in roughly circular orbits, with periods of 6 and 30 years. What is
the ratio of the two planets’ orbital radii?

√

6 In a Star Trek episode, the Enterprise is in a circular orbit
around a planet when something happens to the engines. Spock
then tells Kirk that the ship will spiral into the planet’s surface
unless they can fix the engines. Is this scientifically correct? Why?

7 (a) Suppose a rotating spherical body such as a planet has
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Problem 8.

a radius r and a uniform density ρ, and the time required for one
rotation is T . At the surface of the planet, the apparent acceleration
of a falling object is reduced by the acceleration of the ground out
from under it. Derive an equation for the apparent acceleration of
gravity, g, at the equator in terms of r, ρ, T , and G.

√

(b) Applying your equation from a, by what fraction is your appar-
ent weight reduced at the equator compared to the poles, due to the
Earth’s rotation?

√

(c) Using your equation from a, derive an equation giving the value
of T for which the apparent acceleration of gravity becomes zero,
i.e., objects can spontaneously drift off the surface of the planet.
Show that T only depends on ρ, and not on r.

√

(d) Applying your equation from c, how long would a day have to
be in order to reduce the apparent weight of objects at the equator
of the Earth to zero? [Answer: 1.4 hours]
(e) Astronomers have discovered objects they called pulsars, which
emit bursts of radiation at regular intervals of less than a second.
If a pulsar is to be interpreted as a rotating sphere beaming out a
natural “searchlight” that sweeps past the earth with each rotation,
use your equation from c to show that its density would have to be
much greater than that of ordinary matter.
(f) Astrophysicists predicted decades ago that certain stars that used
up their sources of energy could collapse, forming a ball of neutrons
with the fantastic density of ∼ 1017 kg/m3. If this is what pulsars
really are, use your equation from c to explain why no pulsar has
ever been observed that flashes with a period of less than 1 ms or
so.
8 You are considering going on a space voyage to Mars, in which
your route would be half an ellipse, tangent to the Earth’s orbit at
one end and tangent to Mars’ orbit at the other. Your spacecraft’s
engines will only be used at the beginning and end, not during the
voyage. How long would the outward leg of your trip last? (Assume
the orbits of Earth and Mars are circular.)

√

9 (a) If the earth was of uniform density, would your weight be
increased or decreased at the bottom of a mine shaft? Explain.
(b) In real life, objects weigh slightly more at the bottom of a mine
shaft. What does that allow us to infer about the Earth? ?

10 Ceres, the largest asteroid in our solar system, is a spherical
body with a mass 6000 times less than the earth’s, and a radius
which is 13 times smaller. If an astronaut who weighs 400 N on
earth is visiting the surface of Ceres, what is her weight?

. Solution, p. 284

11 Prove, based on Newton’s laws of motion and Newton’s law
of gravity, that all falling objects have the same acceleration if they
are dropped at the same location on the earth and if other forces
such as friction are unimportant. Do not just say, “g = 9.8 m/s2 –
it’s constant.” You are supposed to be proving that g should be the
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Problem 12.

same number for all objects. . Solution, p. 284

12 The figure shows an image from the Galileo space probe
taken during its August 1993 flyby of the asteroid Ida. Astronomers
were surprised when Galileo detected a smaller object orbiting Ida.
This smaller object, the only known satellite of an asteroid in our
solar system, was christened Dactyl, after the mythical creatures
who lived on Mount Ida, and who protected the infant Zeus. For
scale, Ida is about the size and shape of Orange County, and Dactyl
the size of a college campus. Galileo was unfortunately unable to
measure the time, T , required for Dactyl to orbit Ida. If it had,
astronomers would have been able to make the first accurate deter-
mination of the mass and density of an asteroid. Find an equation
for the density, ρ, of Ida in terms of Ida’s known volume, V , the
known radius, r, of Dactyl’s orbit, and the lamentably unknown
variable T . (This is the same technique that was used successfully
for determining the masses and densities of the planets that have
moons.) . Solution, p. 284

13 If a bullet is shot straight up at a high enough velocity, it
will never return to the earth. This is known as the escape velocity.
We will discuss escape velocity using the concept of energy in the
next book of the series, but it can also be gotten at using straight-
forward calculus. In this problem, you will analyze the motion of
an object of mass m whose initial velocity is exactly equal to es-
cape velocity. We assume that it is starting from the surface of a
spherically symmetric planet of mass M and radius b. The trick is
to guess at the general form of the solution, and then determine the
solution in more detail. Assume (as is true) that the solution is of
the form r = ktp, where r is the object’s distance from the center of
the planet at time t, and k and p are constants.
(a) Find the acceleration, and use Newton’s second law and New-
ton’s law of gravity to determine k and p. You should find that the
result is independent of m.

√

(b) What happens to the velocity as t approaches infinity?
(c) Determine escape velocity from the Earth’s surface.

√ ∫
14 Astronomers have recently observed stars orbiting at very
high speeds around an unknown object near the center of our galaxy.
For stars orbiting at distances of about 1014 m from the object,
the orbital velocities are about 106 m/s. Assuming the orbits are
circular, estimate the mass of the object, in units of the mass of
the sun, 2 × 1030 kg. If the object was a tightly packed cluster of
normal stars, it should be a very bright source of light. Since no
visible light is detected coming from it, it is instead believed to be
a supermassive black hole.

√

15 Astronomers have detected a solar system consisting of three
planets orbiting the star Upsilon Andromedae. The planets have
been named b, c, and d. Planet b’s average distance from the star
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is 0.059 A.U., and planet c’s average distance is 0.83 A.U., where an
astronomical unit or A.U. is defined as the distance from the Earth
to the sun. For technical reasons, it is possible to determine the
ratios of the planets’ masses, but their masses cannot presently be
determined in absolute units. Planet c’s mass is 3.0 times that of
planet b. Compare the star’s average gravitational force on planet
c with its average force on planet b. [Based on a problem by Arnold
Arons.] . Solution, p. 284

16 Some communications satellites are in orbits called geosyn-
chronous: the satellite takes one day to orbit the earth from west
to east, so that as the earth spins, the satellite remains above the
same point on the equator. What is such a satellite’s altitude above
the surface of the earth? . Solution, p. 284

17 As is discussed in more detail in section 5.1 of book 2, tidal
interactions with the earth are causing the moon’s orbit to grow
gradually larger. Laser beams bounced off of a mirror left on the
moon by astronauts have allowed a measurement of the moon’s rate
of recession, which is about 1 cm per year. This means that the
gravitational force acting between earth and moon is decreasing. By
what fraction does the force decrease with each 27-day orbit? [Hint:
If you try to calculate the two forces and subtract, your calculator
will probably give a result of zero due to rounding. Instead, reason
about the fractional amount by which the quantity 1/r2 will change.
As a warm-up, you may wish to observe the percentage change in
1/r2 that results from changing r from 1 to 1.01. Based on a problem
by Arnold Arons.] . Solution, p. 285

18 Suppose that we inhabited a universe in which, instead of
Newton’s law of gravity, we had F = k

√
m1m2/r

2, where k is some
constant with different units than G. (The force is still attrac-
tive.) However, we assume that a = F/m and the rest of Newtonian
physics remains true, and we use a = F/m to define our mass scale,
so that, e.g., a mass of 2 kg is one which exhibits half the accelera-
tion when the same force is applied to it as to a 1 kg mass.
(a) Is this new law of gravity consistent with Newton’s third law?
(b) Suppose you lived in such a universe, and you dropped two un-
equal masses side by side. What would happen?
(c) Numerically, suppose a 1.0-kg object falls with an acceleration
of 10 m/s2. What would be the acceleration of a rain drop with a
mass of 0.1 g? Would you want to go out in the rain?
(d) If a falling object broke into two unequal pieces while it fell,
what would happen?
(e) Invent a law of gravity that results in behavior that is the op-
posite of what you found in part b. [Based on a problem by Arnold
Arons.]

19 (a) A certain vile alien gangster lives on the surface of an
asteroid, where his weight is 0.20 N. He decides he needs to lose
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Problem 21.

weight without reducing his consumption of princesses, so he’s going
to move to a different asteroid where his weight will be 0.10 N. The
real estate agent’s database has asteroids listed by mass, however,
not by surface gravity. Assuming that all asteroids are spherical
and have the same density, how should the mass of his new asteroid
compare with that of his old one?
(b) Jupiter’s mass is 318 times the Earth’s, and its gravity is about
twice Earth’s. Is this consistent with the results of part a? If not,
how do you explain the discrepancy? . Solution, p. 285

20 Where would an object have to be located so that it would
experience zero total gravitational force from the earth and moon?√

21 The planet Uranus has a mass of 8.68× 1025 kg and a radius
of 2.56× 104 km. The figure shows the relative sizes of Uranus and
Earth.
(a) Compute the ratio gU/gE , where gU is the strength of the grav-
itational field at the surface of Uranus and gE is the corresponding
quantity at the surface of the Earth.

√

(b) What is surprising about this result? How do you explain it?

22 The International Space Station orbits at an average altitude
of about 370 km above sea level. Compute the value of g at that
altitude.

√

Problem 23: New Horizons at
its closest approach to Jupiter.
(Jupiter’s four largest moons are
shown for illustrative purposes.)
The masses are:
sun: 1.9891× 1030 kg
Jupiter: 1.8986× 1027 kg
New Horizons: 465.0 kg

23 On Feb. 28, 2007, the New Horizons space probe, on its way
to a 2015 flyby of Pluto, passed by the planet Jupiter for a gravity-
assisted maneuver that increased its speed and changed its course.
The dashed line in the figure shows the spacecraft’s trajectory, which
is curved because of three forces: the force of the exhaust gases from
the probe’s own engines, the sun’s gravitational force, and Jupiter’s
gravitational force. Find the magnitude of the total gravitational
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force acting on the probe. You will find that the sun’s force is much
smaller than Jupiter’s, so that the magnitude of the total force is
determined almost entirely by Jupiter’s force. However, this is a
high-precision problem, and you will find that the total force is
slightly different from Jupiter’s force.

√
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Appendix 1: Exercises

Exercise 0A: Models and Idealization

Equipment:

coffee filters

ramps (one per group)

balls of various sizes

sticky tape

vacuum pump and “guinea and feather” apparatus (one)

The motion of falling objects has been recognized since ancient times as an important piece of
physics, but the motion is inconveniently fast, so in our everyday experience it can be hard to
tell exactly what objects are doing when they fall. In this exercise you will use several techniques
to get around this problem and study the motion. Your goal is to construct a scientific model of
falling. A model means an explanation that makes testable predictions. Often models contain
simplifications or idealizations that make them easier to work with, even though they are not
strictly realistic.

1. One method of making falling easier to observe is to use objects like feathers that we know
from everyday experience will not fall as fast. You will use coffee filters, in stacks of various
sizes, to test the following two hypotheses and see which one is true, or whether neither is true:

Hypothesis 1A: When an object is dropped, it rapidly speeds up to a certain natural falling
speed, and then continues to fall at that speed. The falling speed is proportional to the object’s
weight. (A proportionality is not just a statement that if one thing gets bigger, the other does
too. It says that if one becomes three times bigger, the other also gets three times bigger, etc.)

Hypothesis 1B: Different objects fall the same way, regardless of weight.

Test these hypotheses and discuss your results with your instructor.

2. A second way to slow down the action is to let a ball roll down a ramp. The steeper the
ramp, the closer to free fall. Based on your experience in part 1, write a hypothesis about what
will happen when you race a heavier ball against a lighter ball down the same ramp, starting
them both from rest.

Hypothesis:

Show your hypothesis to your instructor, and then test it.

You have probably found that falling was more complicated than you thought! Is there more
than one factor that affects the motion of a falling object? Can you imagine certain idealized
situations that are simpler? Try to agree verbally with your group on an informal model of
falling that can make predictions about the experiments described in parts 3 and 4.

3. You have three balls: a standard “comparison ball” of medium weight, a light ball, and a



heavy ball. Suppose you stand on a chair and (a) drop the light ball side by side with the
comparison ball, then (b) drop the heavy ball side by side with the comparison ball, then (c)
join the light and heavy balls together with sticky tape and drop them side by side with the
comparison ball.

Use your model to make a prediction:

Test your prediction.

4. Your instructor will pump nearly all the air out of a chamber containing a feather and a
heavier object, then let them fall side by side in the chamber.

Use your model to make a prediction:
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Exercise 1A: Scaling Applied to Leaves

Equipment:

leaves of three sizes, having roughly similar proportions of length, width, and thickness
(example: blades of grass, large ficus leaves, and agave leaves)

balance

graph paper with centimeter squares

1. Each group will have one leaf, and should measure its surface area and volume, and determine
its surface-to-volume ratio (surface area divided by volume). For consistency, every group should
use units of cm2 and cm3, and should only find the area of one side of the leaf. The area can be
found by tracing the area of the leaf on graph paper and counting squares. The volume can be
found by weighing the leaf and assuming that its density is 1 g/cm3, which is nearly true since
leaves are mostly water.

Write your results on the board for comparison with the other groups’ numbers.

2. Both the surface area and the volume are bigger for bigger leaves, but what about the
surface to volume ratios? What implications would this have for the plants’ abilities to survive
in different environments?
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Exercise 2A: Changing Velocity

This exercise involves Michael Johnson’s world-record 200-meter sprint in the 1996 Olympics.
The table gives the distance he has covered at various times. (The data are made up, except for
his total time.) Each group is to find a value of ∆x/∆t between two specified instants, with the
members of the group checking each other’s answers. We will then compare everyone’s results
and discuss how this relates to velocity.

t (s) x (m)
A 10.200 100.0000
B 10.210 100.0990
C 10.300 100.9912
D 11.200 110.0168
E 19.320 200.0000

group 1: Find ∆x/∆t using points A and B.

group 2: Find ∆x/∆t using points A and C.

group 3: Find ∆x/∆t using points A and D.

group 4: Find ∆x/∆t using points A and E.
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Exercise 3A: Reasoning with Ratios and Powers

Equipment:

ping-pong balls and paddles

two-meter sticks

You have probably bounced a ping pong ball straight up and down in the air. The time between
hits is related to the height to which you hit the ball. If you take twice as much time between
hits, how many times higher do you think you will have to hit the ball? Write down your
hypothesis:

Your instructor will first beat out a tempo of 240 beats per minute (four beats per second),
which you should try to match with the ping-pong ball. Measure the height to which the ball
rises:

Now try it at 120 beats per minute:

Compare your hypothesis and your results with the rest of the class.
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Exercise 4A: Force and Motion

Equipment:

2-meter pieces of butcher paper

wood blocks with hooks

string

masses to put on top of the blocks to increase friction

spring scales (preferably calibrated in Newtons)

Suppose a person pushes a crate, sliding it across the floor at a certain speed, and then repeats
the same thing but at a higher speed. This is essentially the situation you will act out in this
exercise. What do you think is different about her force on the crate in the two situations?
Discuss this with your group and write down your hypothesis:

1. First you will measure the amount of friction between the wood block and the butcher paper
when the wood and paper surfaces are slipping over each other. The idea is to attach a spring
scale to the block and then slide the butcher paper under the block while using the scale to
keep the block from moving with it. Depending on the amount of force your spring scale was
designed to measure, you may need to put an extra mass on top of the block in order to increase
the amount of friction. It is a good idea to use long piece of string to attach the block to the
spring scale, since otherwise one tends to pull at an angle instead of directly horizontally.

First measure the amount of friction force when sliding the butcher paper as slowly as possi-
ble:

Now measure the amount of friction force at a significantly higher speed, say 1 meter per second.
(If you try to go too fast, the motion is jerky, and it is impossible to get an accurate reading.)

Discuss your results. Why are we justified in assuming that the string’s force on the block (i.e.,
the scale reading) is the same amount as the paper’s frictional force on the block?

2. Now try the same thing but with the block moving and the paper standing still. Try two
different speeds.

Do your results agree with your original hypothesis? If not, discuss what’s going on. How does
the block “know” how fast to go?
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Exercise 4B: Interactions

Equipment:

neodymium disc magnets (3/group)

compass

triple-arm balance (2/group)

clamp and 50-cm vertical rod for holding balance up

string

tape

scissors

Your goal in this exercise is to compare the forces two magnets exert on each other, i.e., to
compare magnet A’s force on magnet B to magnet B’s force on magnet A. Magnet B will be
made out of two of the small disc magnets put together, so it is twice as strong as magnet A.

1. Note that these magnets are extremely strong! Being careful not to pinch your skin, put two
disc magnets together to make magnet B.

2. Familiarize yourself with how the magnets behave. In addition to magnets A and B, there
are two other magnets that can come into play. The compass needle itself is a magnet, and the
planet earth is a magnet. Ordinarily the compass needle twists around under the influence of
the earth, but the disc magnets are very strong close up, so if you bring them within a few cm
of the compass, the compass is essentially just responding to them. Investigate how different
parts of magnets A and B interact with the compass, and label them appropriately. Investigate
how magnets A and B can attract or repel one another.

3. You are ready to form a hypothesis about the following situation. Suppose we set up two
balances as shown in the figure. The magnets are not touching. The top magnet is hanging from
a hook underneath the pan, giving the same result as if it was on top of the pan. Make sure it
is hanging under the center of the pan. You will want to make sure the magnets are pulling on
each other, not pushing each other away, so that the top magnet will stay in one place.

The balances will not show the magnets’ true weights, because the magnets are exerting forces
on each other. The top balance will read a higher number than it would without any magnetic
forces, and the bottom balance will have a lower than normal reading. The difference between
each magnet’s true weight and the reading on the balance gives a measure of how strongly the
magnet is being pushed or pulled by the other magnet.

How do you think the amount of pushing or pulling experienced by the two magnets will com-
pare? In other words, which reading will change more, or will they change by the same amount?
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Write down a hypothesis:

Before going on to part 4, discuss your hypothesis with your instructor.

4. Now set up the experiment described above with two balances. Since we are interested in
the changse in the scale readings caused by the magnetic forces, you will need to take a total of
four scale readings: one pair with the balances separated and one pair with the magnets close
together as shown in the figure above.

When the balances are together and the magnetic forces are acting, it is not possible to get both
balances to reach equilibrium at the same time, because sliding the weights on one balance can
cause its magnet to move up or down, tipping the other balance. Therefore, while you take a
reading from one balance, you need to immobilize the other in the horizontal position by taping
its tip so it points exactly at the zero mark.

You will also probably find that as you slide the weights, the pointer swings suddenly to the
opposite side, but you can never get it to be stable in the middle (zero) position. Try bringing
the pointer manually to the zero position and then releasing it. If it swings up, you’re too low,
and if it swings down, you’re too high. Search for the dividing line between the too-low region
and the too-high region.

If the changes in the scale readings are very small (say a few grams or less), you need to get
the magnets closer together. It should be possible to get the scale readings to change by large
amounts (up to 10 or 20 g).
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Exercise 5A: Friction

Equipment:

2-meter pieces of butcher paper

wood blocks with hooks

string

masses to put on top of the blocks to increase friction

spring scales (preferably calibrated in Newtons)

1. Using the same equipment as in exercise 4A, test the statement that kinetic friction is
approximately independent of velocity.

2. Test the statement that kinetic friction is independent of surface area.
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Exercise 8A: Vectors and Motion

Each diagram on page 268 shows the motion of an object in an x − y plane. Each dot is one
location of the object at one moment in time. The time interval from one dot to the next is
always the same, so you can think of the vector that connects one dot to the next as a v vector,
and subtract to find ∆v vectors.

1. Suppose the object in diagram 1 is moving from the top left to the bottom right. Deduce
whatever you can about the force acting on it. Does the force always have the same magnitude?
The same direction?

Invent a physical situation that this diagram could represent.

What if you reinterpret the diagram, and reverse the object’s direction of motion?

2. What can you deduce about the force that is acting in diagram 2?

Invent a physical situation that diagram 2 could represent.

3. What can you deduce about the force that is acting in diagram 3?

Invent a physical situation.
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Exercise 10A: The Shell Theorem

This exercise is an approximate numerical test of the shell theorem. There are seven masses
A-G, each being one kilogram. Masses A-E, each one meter from the center, form a shape like
two Egyptian pyramids joined at their bases; this is a rough approximation to a six-kilogram
spherical shell of mass. Mass G is five meters from the center of the main group. The class will
divide into six groups and split up the work required in order to calculate the vector sum of the
six gravitational forces exerted on mass G. Depending on the size of the class, more than one
group may be assigned to deal with the contribution of the same mass to the total force, and
the redundant groups can check each other’s results.

1. Discuss as a class what can be done to simplify the task of calculating the vector sum, and
how to organize things so that each group can work in parallel with the others.

2. Each group should write its results on the board in units of piconewtons, retaining six
significant figures of precision.

3. The class will determine the vector sum and compare with the result that would be obtained
with the shell theorem.
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Appendix 3: Hints and Solutions

Answers to Self-Checks

Answers to Self-Checks for Chapter 0

Page 21, self-check A: If only he has the special powers, then his results can never be
reproduced.

Page 23, self-check B: They would have had to weigh the rays, or check for a loss of weight
in the object from which they were have emitted. (For technical reasons, this was not a mea-
surement they could actually do, hence the opportunity for disagreement.)

Page 29, self-check C: A dictionary might define “strong” as “possessing powerful muscles,”
but that’s not an operational definition, because it doesn’t say how to measure strength numer-
ically. One possible operational definition would be the number of pounds a person can bench
press.

Page 33, self-check D: A microsecond is 1000 times longer than a nanosecond, so it would
seem like 1000 seconds, or about 20 minutes.

Page 34, self-check E: Exponents have to do with multiplication, not addition. The first line
should be 100 times longer than the second, not just twice as long.

Page 37, self-check F: The various estimates differ by 5 to 10 million. The CIA’s estimate
includes a ridiculous number of gratuitous significant figures. Does the CIA understand that
every day, people in are born in, die in, immigrate to, and emigrate from Nigeria?

Page 37, self-check G: (1) 4; (2) 2; (3) 2

Answers to Self-Checks for Chapter 1

Page 44, self-check A: 1 yd2 × (3 ft/1 yd)2 = 9 ft2

1 yd3 × (3 ft/1 yd)3 = 27 ft3

Answers to Self-Checks for Chapter 2

Page 73, self-check A: Coasting on a bike and coasting on skates give one-dimensional center-
of-mass motion, but running and pedaling require moving body parts up and down, which makes
the center of mass move up and down. The only example of rigid-body motion is coasting on
skates. (Coasting on a bike is not rigid-body motion, because the wheels twist.)

Page 73, self-check B: By shifting his weight around, he can cause the center of mass not to
coincide with the geometric center of the wheel.

Page 74, self-check C: (1) a point in time; (2) time in the abstract sense; (3) a time interval



Page 75, self-check D: Zero, because the “after” and “before” values of x are the same.

Page 82, self-check E: (1) The effect only occurs during blastoff, when their velocity is
changing. Once the rocket engines stop firing, their velocity stops changing, and they no longer
feel any effect. (2) It is only an observable effect of your motion relative to the air.

Answers to Self-Checks for Chapter 3

Page 93, self-check A: Its speed increases at a steady rate, so in the next second it will travel
19 cm.

Answers to Self-Checks for Chapter 4

Page 134, self-check A: (1) The case of ρ = 0 represents an object falling in a vacuum, i.e.,
there is no density of air. The terminal velocity would be infinite. Physically, we know that an
object falling in a vacuum would never stop speeding up, since there would be no force of air
friction to cancel the force of gravity. (2) The 4-cm ball would have a mass that was greater by a
factor of 4×4×4, but its cross-sectional area would be greater by a factor of 4×4. Its terminal
velocity would be greater by a factor of

√
43/42 = 2. (3) It isn’t of any general importance. It’s

just an example of one physical situation. You should not memorize it.

Page 136, self-check B: (1) This is motion, not force. (2) This is a description of how the
sub is able to get the water to produce a forward force on it. (3) The sub runs out of energy,
not force.

Answers to Self-Checks for Chapter 5

Page 147, self-check A: The sprinter pushes backward against the ground, and by Newton’s
third law, the ground pushes forward on her. (Later in the race, she is no longer accelerating,
but the ground’s forward force is needed in order to cancel out the backward forces, such as air
friction.)

Page 155, self-check B: (1) It’s kinetic friction, because her uniform is sliding over the dirt.
(2) It’s static friction, because even though the two surfaces are moving relative to the landscape,
they’re not slipping over each other. (3) Only kinetic friction creates heat, as when you rub
your hands together. If you move your hands up and down together without sliding them across
each other, no heat is produced by the static friction.

Page 156, self-check C: Frictionless ice can certainly make a normal force, since otherwise a
hockey puck would sink into the ice. Friction is not possible without a normal force, however:
we can see this from the equation, or from common sense, e.g., while sliding down a rope you
do not get any friction unless you grip the rope.

Page 157, self-check D: (1) Normal forces are always perpendicular to the surface of contact,
which means right or left in this figure. Normal forces are repulsive, so the cliff’s force on the
feet is to the right, i.e., away from the cliff. (2) Frictional forces are always parallel to the surface
of contact, which means right or left in this figure. Static frictional forces are in the direction
that would tend to keep the surfaces from slipping over each other. If the wheel was going to
slip, its surface would be moving to the left, so the static frictional force on the wheel must be
in the direction that would prevent this, i.e., to the right. This makes sense, because it is the
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static frictional force that accelerates the dragster. (3) Normal forces are always perpendicular
to the surface of contact. In this diagram, that means either up and to the left or down and to
the right. Normal forces are repulsive, so the ball is pushing the bat away from itself. Therefore
the ball’s force is down and to the right on this diagram.

Answers to Self-Checks for Chapter 6

Page 179, self-check A: The wind increases the ball’s overall speed. If you think about it
in terms of overall speed, it’s not so obvious that the increased speed is exactly sufficient to
compensate for the greater distance. However, it becomes much simpler if you think about the
forward motion and the sideways motion as two separate things. Suppose the ball is initially
moving at one meter per second. Even if it picks up some sideways motion from the wind, it’s
still getting closer to the wall by one meter every second.

Answers to Self-Checks for Chapter 7

Page 191, self-check A: v = ∆r/∆t

Page 191, self-check B:

Page 195, self-check C: A−B is equivalent to A+(−B), which can be calculated graphically
by reversing B to form −B, and then adding it to A.

Answers to Self-Checks for Chapter 8

Page 204, self-check A: (1) It is speeding up, because the final velocity vector has the greater
magnitude. (2) The result would be zero, which would make sense. (3) Speeding up produced
a ∆v vector in the same direction as the motion. Slowing down would have given a ∆v that
bointed backward.

Page 205, self-check B: As we have already seen, the projectile has ax = 0 and ay = −g, so
the acceleration vector is pointing straight down.

Answers to Self-Checks for Chapter 9

Page 219, self-check A: (1) Uniform. They have the same motion as the drum itself, which
is rotating as one solid piece. No part of the drum can be rotating at a different speed from any
other part. (2) Nonuniform. Gravity speeds it up on the way down and slows it down on the
way up.

Answers to Self-Checks for Chapter 10

Page 236, self-check A: It would just stay where it was. Plugging v = 0 into eq. [1] would give
F = 0, so it would not accelerate from rest, and would never fall into the sun. No astronomer
had ever observed an object that did that!
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Page 237, self-check B:

F ∝ mr/T 2 ∝ mr/(r3/2)2 ∝ mr/r3 = m/r2

Page 241, self-check C: The equal-area law makes equally good sense in the case of a hyper-
bolic orbit (and observations verify it). The elliptical orbit law had to be generalized by Newton
to include hyperbolas. The law of periods doesn’t make sense in the case of a hyperbolic orbit,
because a hyperbola never closes back on itself, so the motion never repeats.

Page 244, self-check D: Above you there is a small part of the shell, comprising only a tiny
fraction of the earth’s mass. This part pulls you up, while the whole remainder of the shell pulls
you down. However, the part above you is extremely close, so it makes sense that its force on
you would be far out of proportion to its small mass.

Solutions to Selected Homework Problems

Solutions for Chapter 0

Page 41, problem 6:

134 mg× 10−3 g

1 mg
× 10−3 kg

1 g
= 1.34× 10−4 kg

Page 42, problem 8: (a) Let’s do 10.0 g and 1000 g. The arithmetic mean is 505 grams. It
comes out to be 0.505 kg, which is consistent. (b) The geometric mean comes out to be 100
g or 0.1 kg, which is consistent. (c) If we multiply meters by meters, we get square meters.
Multiplying grams by grams should give square grams! This sounds strange, but it makes sense.
Taking the square root of square grams (g2) gives grams again. (d) No. The superduper mean
of two quantities with units of grams wouldn’t even be something with units of grams! Related
to this shortcoming is the fact that the superduper mean would fail the kind of consistency test
carried out in the first two parts of the problem.

Solutions for Chapter 1

Page 61, problem 10:

1 mm2 ×
(

1 cm

10 mm

)2

= 10−2 cm2

Page 61, problem 11: The bigger scope has a diameter that’s ten times greater. Area scales
as the square of the linear dimensions, so its light-gathering power is a hundred times greater
(10× 10).

Page 61, problem 12: Since they differ by two steps on the Richter scale, the energy of the
bigger quake is 10000 times greater. The wave forms a hemisphere, and the surface area of the
hemisphere over which the energy is spread is proportional to the square of its radius. If the
amount of vibration was the same, then the surface areas much be in the ratio of 10000:1, which
means that the ratio of the radii is 100:1.

Page 62, problem 17: The cone of mixed gin and vermouth is the same shape as the cone of
vermouth, but its linear dimensions are doubled, so its volume is 8 times greater. The ratio of
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gin to vermouth is 7 to 1.

Page 62, problem 19: Scaling down the linear dimensions by a factor of 1/10 reduces the
volume by a factor of (1/10)3 = 1/1000, so if the whole cube is a liter, each small one is one
milliliter.

Page 63, problem 20: (a) They’re all defined in terms of the ratio of side of a triangle to
another. For instance, the tangent is the length of the opposite side over the length of the
adjacent side. Dividing meters by meters gives a unitless result, so the tangent, as well as the
other trig functions, is unitless. (b) The tangent function gives a unitless result, so the units on
the right-hand side had better cancel out. They do, because the top of the fraction has units of
meters squared, and so does the bottom.

Page 63, problem 21: Let’s estimate the Great Wall’s mass, and then figure out how many
bricks that would represent. The wall is famous because it covers pretty much all of China’s
northern border, so let’s say it’s 1000 km long. From pictures, it looks like it’s about 10 m high
and 10 m wide, so the total volume would be 106 m× 10 m× 10 m = 108 m3. If a single brick
has a volume of 1 liter, or 10−3 m3, then this represents about 1011 bricks. If one person can
lay 10 bricks in an hour (taking into account all the preparation, etc.), then this would be 1010

man-hours.

Solutions for Chapter 2

Page 89, problem 4:

1 light-year = v∆t

=
(
3× 108 m/s

)
(1 year)

=
(
3× 108 m/s

) [
(1 year)×

(
365 days

1 year

)
×
(

24 hours

1 day

)
×
(

3600 s

1 hour

)]
= 9.5× 1015 m

Page 89, problem 5: Velocity is relative, so having to lean tells you nothing about the train’s
velocity. Fullerton is moving at a huge speed relative to Beijing, but that doesn’t produce any
noticeable effect in either city. The fact that you have to lean tells you that the train is changing
its speed, but it doesn’t tell you what the train’s current speed is.

Page 89, problem 7: To the person riding the moving bike, bug A is simply going in circles.
The only difference between the motions of the two wheels is that one is traveling through space,
but motion is relative, so this doesn’t have any effect on the bugs. It’s equally hard for each of
them.

Page 90, problem 10: In one second, the ship moves v meters to the east, and the person
moves v meters north relative to the deck. Relative to the water, he traces the diagonal of a
triangle whose length is given by the Pythagorean theorem, (v2 + v2)1/2 =

√
2v. Relative to

the water, he is moving at a 45-degree angle between north and east.

Solutions for Chapter 3

Page 117, problem 14:
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Page 117, problem 15: Taking g to be 10 m/s2, the bullet loses 10 m/s of speed every second,
so it will take 10 s to come to a stop, and then another 10 s to come back down, for a total of
20 s.

Page 117, problem 16: ∆x = 1
2at

2, so for a fixed value of ∆x, we have t ∝ 1/
√
a. Decreasing

a by a factor of 3 means that t will increase by a factor of
√

3 = 1.7. (The given piece of data,
3, only has one sig fig, but rounding the final result off to one sig fig, giving 2 rather then 1.7,
would be a little too severe. As discussed in section 0.10, sig figs are only a rule of thumb, and
when in doubt, you can change the input data to see how much the output would have changed.
The ratio of the gravitational fields on Earth and Mars must be in the range from 2.5 to 3.5,
since otherwise the given data would not have been rounded off to 3. Using this range of inputs,
the possible range of values for the final result becomes 1.6 to 1.9. The final digit in the 1.7
is therefore a little uncertain, but it’s not complete garbage. It carries useful information, and
should not be thrown out.)

Page 117, problem 17:

v =
dx

dt
= 10− 3t2

a =
dv

dt
= −6t

= −18 m/s2

Page 118, problem 18: (a) Solving for ∆x = 1
2at

2 for a, we find a = 2∆x/t2 = 5.51 m/s2.

(b) v =
√

2a∆x = 66.6 m/s. (c) The actual car’s final velocity is less than that of the idealized
constant-acceleration car. If the real car and the idealized car covered the quarter mile in the
same time but the real car was moving more slowly at the end than the idealized one, the real
car must have been going faster than the idealized car at the beginning of the race. The real car
apparently has a greater acceleration at the beginning, and less acceleration at the end. This
make sense, because every car has some maximum speed, which is the speed beyond which it
cannot accelerate.

Page 118, problem 19: Since the lines are at intervals of one m/s and one second, each box
represents one meter. From t = 0 to t = 2 s, the area under the curve represents a positive ∆x
of 6 m. (The triangle has half the area of the 2 × 6 rectangle it fits inside.) After t = 2 s, the
area above the curve represents negative ∆x. To get −6 m worth of area, we need to go out to
t = 6 s, at which point the triangle under the axis has a width of 4 s and a height of 3 m/s, for
an area of 6 m (half of 3× 4).

Page 118, problem 20: (a) We choose a coordinate system with positive pointing to the right.
Some people might expect that the ball would slow down once it was on the more gentle ramp.
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This may be true if there is significant friction, but Galileo’s experiments with inclined planes
showed that when friction is negligible, a ball rolling on a ramp has constant acceleration, not
constant speed. The speed stops increasing as quickly once the ball is on the more gentle slope,
but it still keeps on increasing. The a-t graph can be drawn by inspecting the slope of the v-t
graph.

(b) The ball will roll back down, so the second half of the motion is the same as in part a. In
the first (rising) half of the motion, the velocity is negative, since the motion is in the opposite
direction compared to the positive x axis. The acceleration is again found by inspecting the
slope of the v-t graph.

Page 118, problem 21: This is a case where it’s probably easiest to draw the acceleration
graph first. While the ball is in the air (bc, de, etc.), the only force acting on it is gravity, so
it must have the same, constant acceleration during each hop. Choosing a coordinate system
where the positive x axis points up, this becomes a negative acceleration (force in the opposite
direction compared to the axis). During the short times between hops when the ball is in contact
with the ground (cd, ef, etc.), it experiences a large acceleration, which turns around its velocity
very rapidly. These short positive accelerations probably aren’t constant, but it’s hard to know
how they’d really look. We just idealize them as constant accelerations. Similarly, the hand’s
force on the ball during the time ab is probably not constant, but we can draw it that way,
since we don’t know how to draw it more realistically. Since our acceleration graph consists
of constant-acceleration segments, the velocity graph must consist of line segments, and the
position graph must consist of parabolas. On the x graph, I chose zero to be the height of the
center of the ball above the floor when the ball is just lying on the floor. When the ball is
touching the floor and compressed, as in interval cd, its center is below this level, so its x is
negative.
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Page 118, problem 22: We have v2
f = 2a∆x, so the distance is proportional to the square of

the velocity. To get up to half the speed, the ball needs 1/4 the distance, i.e., L/4.

Solutions for Chapter 4

Page 142, problem 7: a = ∆v/∆t, and also a = F/m, so

∆t =
∆v

a

=
m∆v

F

=
(1000 kg)(50 m/s− 20 m/s)

3000 N
= 10 s

Page 143, problem 10: (a) This is a measure of the box’s resistance to a change in its state
of motion, so it measures the box’s mass. The experiment would come out the same in lunar
gravity.
(b) This is a measure of how much gravitational force it feels, so it’s a measure of weight. In
lunar gravity, the box would make a softer sound when it hit.
(c) As in part a, this is a measure of its resistance to a change in its state of motion: its mass.
Gravity isn’t involved at all.

Solutions for Chapter 5

Page 171, problem 14:

(a)

top spring’s rightward force on connector
...connector’s leftward force on top spring
bottom spring’s rightward force on connector
...connector’s leftward force on bottom spring
hand’s leftward force on connector
...connector’s rightward force on hand
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Looking at the three forces on the connector, we see that the hand’s force must be double the
force of either spring. The value of x− xo is the same for both springs and for the arrangement
as a whole, so the spring constant must be 2k. This corresponds to a stiffer spring (more force
to produce the same extension).

(b) Forces in which the left spring participates:

hand’s leftward force on left spring
...left spring’s rightward force on hand
right spring’s rightward force on left spring
...left spring’s leftward force on right spring

Forces in which the right spring participates:

left spring’s leftward force on right spring
...right spring’s rightward force on left spring
wall’s rightward force on right spring
...right spring’s leftward force on wall

Since the left spring isn’t accelerating, the total force on it must be zero, so the two forces acting
on it must be equal in magnitude. The same applies to the two forces acting on the right spring.
The forces between the two springs are connected by Newton’s third law, so all eight of these
forces must be equal in magnitude. Since the value of x−xo for the whole setup is double what
it is for either spring individually, the spring constant of the whole setup must be k/2, which
corresponds to a less stiff spring.

Page 171, problem 16: (a) Spring constants in parallel add, so the spring constant has to be
proportional to the cross-sectional area. Two springs in series give half the spring constant, three
springs in series give 1/3, and so on, so the spring constant has to be inversely proportional
to the length. Summarizing, we have k ∝ A/L. (b) With the Young’s modulus, we have
k = (A/L)E.The spring constant has units of N/m, so the units of E would have to be N/m2.

Page 172, problem 18: (a) The swimmer’s acceleration is caused by the water’s force on the
swimmer, and the swimmer makes a backward force on the water, which accelerates the water
backward. (b) The club’s normal force on the ball accelerates the ball, and the ball makes a
backward normal force on the club, which decelerates the club. (c) The bowstring’s normal force
accelerates the arrow, and the arrow also makes a backward normal force on the string. This
force on the string causes the string to accelerate less rapidly than it would if the bow’s force
was the only one acting on it. (d) The tracks’ backward frictional force slows the locomotive
down. The locomotive’s forward frictional force causes the whole planet earth to accelerate by
a tiny amount, which is too small to measure because the earth’s mass is so great.

Page 172, problem 20: The person’s normal force on the box is paired with the box’s normal
force on the person. The dirt’s frictional force on the box pairs with the box’s frictional force
on the dirt. The earth’s gravitational force on the box matches the box’s gravitational force on
the earth.

Page 173, problem 26: (a) A liter of water has a mass of 1.0 kg. The mass is the same in
all three locations. Mass indicates how much an object resists a change in its motion. It has
nothing to do with gravity. (b) The term “weight” refers to the force of gravity on an object.
The bottle’s weight on earth is FW = mg = 9.8 N. Its weight on the moon is about one sixth
that value, and its weight in interstellar space is zero.
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Solutions for Chapter 6

Page 186, problem 5: (a) The easiest strategy is to find the time spent aloft, and then find
the range. The vertical motion and the horizontal motion are independent. The vertical motion
has acceleration −g, and the cannonball spends enough time in the air to reverse its vertical
velocity component completely, so we have

∆vy = vyf − vyi
= −2v sin θ .

The time spent aloft is therefore

∆t = ∆vy/ay

= 2v sin θ/g .

During this time, the horizontal distance traveled is

R = vx∆t

= 2v2 sin θ cos θ/g .

(b) The range becomes zero at both θ = 0 and at θ = 90 ◦. The θ = 0 case gives zero range
because the ball hits the ground as soon as it leaves the mouth of the cannon. A 90-degree angle
gives zero range because the cannonball has no horizontal motion.

Solutions for Chapter 8

Page 214, problem 8: We want to find out about the velocity vector vBG of the bullet relative
to the ground, so we need to add Annie’s velocity relative to the ground vAG to the bullet’s
velocity vector vBA relative to her. Letting the positive x axis be east and y north, we have

vBA,x = (140 mi/hr) cos 45 ◦

= 100 mi/hr

vBA,y = (140 mi/hr) sin 45 ◦

= 100 mi/hr

and

vAG,x = 0

vAG,y = 30 mi/hr .

The bullet’s velocity relative to the ground therefore has components

vBG,x = 100 mi/hrand

vBG,y = 130 mi/hr .

Its speed on impact with the animal is the magnitude of this vector

|vBG| =
√

(100 mi/hr)2 + (130 mi/hr)2

= 160 mi/hr
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(rounded off to 2 significant figures).

Page 214, problem 9: Since its velocity vector is constant, it has zero acceleration, and the
sum of the force vectors acting on it must be zero. There are three forces acting on the plane:
thrust, lift, and gravity. We are given the first two, and if we can find the third we can infer its
mass. The sum of the y components of the forces is zero, so

0 = Fthrust,y + Flift,y + FW ,y

= |Fthrust| sin θ + |Flift| cos θ −mg .

The mass is

m = (|Fthrust| sin θ + |Flift| cos θ)/g

= 6.9× 104 kg

Page 214, problem 10: (a) Since the wagon has no acceleration, the total forces in both the
x and y directions must be zero. There are three forces acting on the wagon: FT , FW , and the
normal force from the ground, FN . If we pick a coordinate system with x being horizontal and y
vertical, then the angles of these forces measured counterclockwise from the x axis are 90 ◦ − φ,
270 ◦, and 90 ◦ + θ, respectively. We have

Fx,total = |FT | cos(90 ◦ − φ) + |FW | cos(270 ◦) + |FN | cos(90 ◦ + θ)

Fy,total = |FT | sin(90 ◦ − φ) + |FW | sin(270 ◦) + |FN | sin(90 ◦ + θ) ,

which simplifies to

0 = |FT | sinφ− |FN | sin θ
0 = |FT | cosφ− |FW |+ |FN | cos θ.

The normal force is a quantity that we are not given and do not with to find, so we should
choose it to eliminate. Solving the first equation for |FN | = (sinφ/ sin θ)|FT |, we eliminate |FN |
from the second equation,

0 = |FT | cosφ− |FW |+ |FT | sinφ cos θ/ sin θ

and solve for |FT |, finding

|FT | =
|FW |

cosφ+ sinφ cos θ/ sin θ
.

Multiplying both the top and the bottom of the fraction by sin θ, and using the trig identity for
sin(θ + φ) gives the desired result,

|FT | =
sin θ

sin(θ + φ)
|FW | .

(b) The case of φ = 0, i.e., pulling straight up on the wagon, results in |FT | = |FW |: we simply
support the wagon and it glides up the slope like a chair-lift on a ski slope. In the case of
φ = 180 ◦ − θ, |FT | becomes infinite. Physically this is because we are pulling directly into the
ground, so no amount of force will suffice.
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Page 215, problem 11: (a) If there was no friction, the angle of repose would be zero, so the
coefficient of static friction, µs, will definitely matter. We also make up symbols θ, m and g for
the angle of the slope, the mass of the object, and the acceleration of gravity. The forces form
a triangle just like the one in section 8.3, but instead of a force applied by an external object,
we have static friction, which is less than µs|FN |. As in that example, |Fs| = mg sin θ, and
|Fs| < µs|FN |, so

mg sin θ < µs|FN | .

From the same triangle, we have |FN | = mg cos θ, so

mg sin θ < µsmg cos θ .

Rearranging,
θ < tan−1 µs .

(b) Both m and g canceled out, so the angle of repose would be the same on an asteroid.

Solutions for Chapter 9

Page 228, problem 5: Each cyclist has a radial acceleration of v2/r = 5 m/s2. The tangential
accelerations of cyclists A and B are 375 N/75 kg = 5 m/s2.

Page 229, problem 6: (a) The inward normal force must be sufficient to produce circular
motion, so

|FN | = mv2/r .

We are searching for the minimum speed, which is the speed at which the static friction force is
just barely able to cancel out the downward gravitational force. The maximum force of static
friction is

|Fs| = µs|FN | ,

and this cancels the gravitational force, so

|Fs| = mg .

Solving these three equations for v gives

v =

√
gr

µs
.

(b) Greater by a factor of
√

3.

Page 229, problem 7: The inward force must be supplied by the inward component of the
normal force,

|FN | sin θ = mv2/r .
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The upward component of the normal force must cancel the downward force of gravity,

|FN | cos θ = mg.

Eliminating |FN | and solving for θ, we find

θ = tan−1

(
v2

gr

)
.

Solutions for Chapter 10

Page 252, problem 10: Newton’s law of gravity tells us that her weight will be 6000 times
smaller because of the asteroid’s smaller mass, but 132 = 169 times greater because of its smaller
radius. Putting these two factors together gives a reduction in weight by a factor of 6000/169,
so her weight will be (400 N)(169)/(6000) = 11 N.

Page 252, problem 11: Newton’s law of gravity says F = Gm1m2/r
2, and Newton’s second

law says F = m2a, so Gm1m2/r
2 = m2a. Since m2 cancels, a is independent of m2.

Page 253, problem 12: Newton’s second law gives

F = mDaD ,

where F is Ida’s force on Dactyl. Using Newton’s universal law of gravity, F= GmImD/r
2,and

the equation a = v2/r for circular motion, we find

GmImD/r
2 = mDv

2/r.

Dactyl’s mass cancels out, giving

GmI/r
2 = v2/r.

Dactyl’s velocity equals the circumference of its orbit divided by the time for one orbit: v =
2πr/T . Inserting this in the above equation and solving for mI , we find

mI =
4π2r3

GT 2
,

so Ida’s density is

ρ = mI/V

=
4π2r3

GV T 2
.

Page 253, problem 15: Newton’s law of gravity depends on the inverse square of the distance,
so if the two planets’ masses had been equal, then the factor of 0.83/0.059 = 14 in distance would
have caused the force on planet c to be 142 = 2.0× 102 times weaker. However, planet c’s mass
is 3.0 times greater, so the force on it is only smaller by a factor of 2.0× 102/3.0 = 65.

Page 254, problem 16: The reasoning is reminiscent of section 10.2. From Newton’s second
law we have

F = ma = mv2/r = m(2πr/T )2/r = 4π2mr/T 2 ,
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and Newton’s law of gravity gives F = GMm/r2, where M is the mass of the earth. Setting
these expressions equal to each other, we have

4π2mr/T 2 = GMm/r2 ,

which gives

r =

(
GMT 2

4π2

)1/3

= 4.22× 104 km .

This is the distance from the center of the earth, so to find the altitude, we need to subtract
the radius of the earth. The altitude is 3.58× 104 km.

Page 254, problem 17: Any fractional change in r results in double that amount of fractional
change in 1/r2. For example, raising r by 1% causes 1/r2 to go down by very nearly 2%. The
fractional change in 1/r2 is actually

2× (1/27) cm

3.84× 105 km
× 1 km

105 cm
= 2× 10−12

Page 254, problem 19: (a) The asteroid’s mass depends on the cube of its radius, and for
a given mass the surface gravity depends on r−2. The result is that surface gravity is directly
proportional to radius. Half the gravity means half the radius, or one eighth the mass. (b)
To agree with a, Earth’s mass would have to be 1/8 Jupiter’s. We assumed spherical shapes
and equal density. Both planets are at least roughly spherical, so the only way out of the
contradiction is if Jupiter’s density is significantly less than Earth’s.

Answers to Selected Homework Problems
Solutions for Chapter 1

Page 63, problem 23: Check: The actual number of species of lupine occurring in the
San Gabriels is 22. You should find that your answer comes out in the same ballpark as this
figure, but not exactly the same, of course, because the scaling rule is only a generalization.
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Index
acceleration, 95

as a vector, 204
constant, 107
definition, 102
negative, 98

alchemy, 21
area, 105

operational definition, 43
scaling of, 45

area under a curve
area under a-t graph, 107
under v-t graph, 105

astrology, 21

Bacon, Francis, 25

calculus
differential, 86
fundamental theorem of, 113
integral, 113
invention by Newton, 86
Leibnitz notation, 86
with vectors, 208

cathode rays, 23
center of mass, 70

motion of, 71
center-of-mass motion, 71
centi- (metric prefix), 28
circular motion, 217

nonuniform, 219
uniform, 219

cockroaches, 53
coefficient of kinetic friction, 156
coefficient of static friction, 156
component

defined, 181
conversions of units, 34
coordinate system

defined, 76
Copernicus, 80

Darwin, 24
delta notation, 74
derivative, 86

second, 113

Dialogues Concerning the Two New Sciences,
46

dynamics, 67

elephant, 55
energy

distinguished from force, 135

falling objects, 91
Feynman, 94
Feynman, Richard, 94
force

analysis of forces, 159
Aristotelian versus Newtonian, 124
as a vector, 207
contact, 126
distinguished from energy, 135
frictional, 154
gravitational, 154
net, 127
noncontact, 126
normal, 154
positive and negative signs of, 127
transmission, 162

forces
classification of, 150

frame of reference
defined, 76
inertial or noninertial, 138

French Revolution, 28
friction

fluid, 158
kinetic, 154, 155
static, 154, 155

Galileo Galilei, 45
gamma rays, 23
grand jete, 71
graphing, 78
graphs

of position versus time, 76
velocity versus time, 85

high jump, 73
Hooke’s law, 164



hypothesis, 20

inertia
principle of, 80

integral, 113

Kepler, 234
Kepler’s laws, 234, 235

elliptical orbit law, 235
equal-area law, 235
law of periods, 235, 237

kilo- (metric prefix), 28
kilogram, 30
kinematics, 67

Laplace, 22
Leibnitz, 86
light, 22

magnitude of a vector
defined, 190

matter, 22
mega- (metric prefix), 28
meter (metric unit), 30
metric system, 28

prefixes, 28
micro- (metric prefix), 28
microwaves, 23
milli- (metric prefix), 28
mks units, 31
model

scientific, 154
models, 71
motion

rigid-body, 69
types of, 69

Muybridge, Eadweard, 201

nano- (metric prefix), 28
Newton

first law of motion, 127
second law of motion, 131

Newton’s laws of motion
in three dimensions, 183

Newton’s third law, 146
Newton, Isaac, 28

definition of time, 31

operational definitions, 29
order-of-magnitude estimates, 57

parabola
motion of projectile on, 182

Pauli exclusion principle, 24
period

of uniform circular motion, 224
photon, 149
physics, 22
POFOSTITO, 147
Pope, 46
projectiles, 182
pulley, 165

radial component
defined, 226

radio waves, 23
reductionism, 25
Renaissance, 19
rotation, 69

salamanders, 53
scalar

defined, 190
scaling, 45

applied to biology, 53
scientific method, 20
second (unit), 29
shell theorem, 244
SI units, 31
significant figures, 36
simple machine

defined, 165
slam dunk, 71
spring constant, 164
Stanford, Leland, 201
strain, 164
Swift, Jonathan, 45

tension, 163
theory, 20
time

duration, 74
point in, 74

transmission of forces, 162

unit vectors, 196
units, conversion of, 34

vector, 67
acceleration, 204
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addition, 190
defined, 190
force, 207
magnitude of, 190
velocity, 202

velocity
addition of velocities, 83
as a vector, 202
definition, 77
negative, 83

vertebra, 56
volume

operational definition, 43
scaling of, 45

weight force
defined, 126
relationship to mass, 132

weightlessness
biological effects, 110

x-rays, 23

Young’s modulus, 171
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Mathematical Review
Algebra

Quadratic equation:

The solutions of ax2 + bx+ c = 0
are x = −b±

√
b2−4ac
2a .

Logarithms and exponentials:

ln(ab) = ln a+ ln b

ea+b = eaeb

ln ex = eln x = x

ln(ab) = b ln a

Geometry, area, and volume

area of a triangle of base b and height h = 1
2bh

circumference of a circle of radius r = 2πr
area of a circle of radius r = πr2

surface area of a sphere of radius r = 4πr2

volume of a sphere of radius r = 4
3πr

3

Trigonometry with a right triangle

sin θ = o/h cos θ = a/h tan θ = o/a

Pythagorean theorem: h2 = a2 + o2

Trigonometry with any triangle

Law of Sines:

sinα

A
=

sinβ

B
=

sin γ

C

Law of Cosines:

C2 = A2 +B2 − 2AB cos γ

Properties of the derivative and integral (for
students in calculus-based courses)

Let f and g be functions of x, and let c be a con-
stant.

Linearity of the derivative:

d

dx
(cf) = c

df

dx

d

dx
(f + g) =

df

dx
+

dg

dx

The chain rule:

d

dx
f(g(x)) = f ′(g(x))g′(x)

Derivatives of products and quotients:

d

dx
(fg) =

df

dx
g +

dg

dx
f

d

dx

(
f

g

)
=
f ′

g
− fg′

g2

Some derivatives:
d
dxx

m = mxm−1, except for m = 0
d
dx sinx = cosx d

dx cosx = − sinx
d
dxe

x = ex d
dx lnx = 1

x

The fundamental theorem of calculus:∫
df

dx
dx = f

Linearity of the integral:∫
cf(x)dx = c

∫
f(x)dx

∫
[f(x) + g(x)] =

∫
f(x)dx+

∫
g(x)dx

Integration by parts:∫
fdg = fg −

∫
gdf

Index 289



Trig Table
θ sin θ cos θ tan θ θ sin θ cos θ tan θ θ sin θ cos θ tan θ

0 ◦ 0.000 1.000 0.000 30 ◦ 0.500 0.866 0.577 60 ◦ 0.866 0.500 1.732
1 ◦ 0.017 1.000 0.017 31 ◦ 0.515 0.857 0.601 61 ◦ 0.875 0.485 1.804
2 ◦ 0.035 0.999 0.035 32 ◦ 0.530 0.848 0.625 62 ◦ 0.883 0.469 1.881
3 ◦ 0.052 0.999 0.052 33 ◦ 0.545 0.839 0.649 63 ◦ 0.891 0.454 1.963
4 ◦ 0.070 0.998 0.070 34 ◦ 0.559 0.829 0.675 64 ◦ 0.899 0.438 2.050
5 ◦ 0.087 0.996 0.087 35 ◦ 0.574 0.819 0.700 65 ◦ 0.906 0.423 2.145
6 ◦ 0.105 0.995 0.105 36 ◦ 0.588 0.809 0.727 66 ◦ 0.914 0.407 2.246
7 ◦ 0.122 0.993 0.123 37 ◦ 0.602 0.799 0.754 67 ◦ 0.921 0.391 2.356
8 ◦ 0.139 0.990 0.141 38 ◦ 0.616 0.788 0.781 68 ◦ 0.927 0.375 2.475
9 ◦ 0.156 0.988 0.158 39 ◦ 0.629 0.777 0.810 69 ◦ 0.934 0.358 2.605

10 ◦ 0.174 0.985 0.176 40 ◦ 0.643 0.766 0.839 70 ◦ 0.940 0.342 2.747
11 ◦ 0.191 0.982 0.194 41 ◦ 0.656 0.755 0.869 71 ◦ 0.946 0.326 2.904
12 ◦ 0.208 0.978 0.213 42 ◦ 0.669 0.743 0.900 72 ◦ 0.951 0.309 3.078
13 ◦ 0.225 0.974 0.231 43 ◦ 0.682 0.731 0.933 73 ◦ 0.956 0.292 3.271
14 ◦ 0.242 0.970 0.249 44 ◦ 0.695 0.719 0.966 74 ◦ 0.961 0.276 3.487
15 ◦ 0.259 0.966 0.268 45 ◦ 0.707 0.707 1.000 75 ◦ 0.966 0.259 3.732
16 ◦ 0.276 0.961 0.287 46 ◦ 0.719 0.695 1.036 76 ◦ 0.970 0.242 4.011
17 ◦ 0.292 0.956 0.306 47 ◦ 0.731 0.682 1.072 77 ◦ 0.974 0.225 4.331
18 ◦ 0.309 0.951 0.325 48 ◦ 0.743 0.669 1.111 78 ◦ 0.978 0.208 4.705
19 ◦ 0.326 0.946 0.344 49 ◦ 0.755 0.656 1.150 79 ◦ 0.982 0.191 5.145
20 ◦ 0.342 0.940 0.364 50 ◦ 0.766 0.643 1.192 80 ◦ 0.985 0.174 5.671
21 ◦ 0.358 0.934 0.384 51 ◦ 0.777 0.629 1.235 81 ◦ 0.988 0.156 6.314
22 ◦ 0.375 0.927 0.404 52 ◦ 0.788 0.616 1.280 82 ◦ 0.990 0.139 7.115
23 ◦ 0.391 0.921 0.424 53 ◦ 0.799 0.602 1.327 83 ◦ 0.993 0.122 8.144
24 ◦ 0.407 0.914 0.445 54 ◦ 0.809 0.588 1.376 84 ◦ 0.995 0.105 9.514
25 ◦ 0.423 0.906 0.466 55 ◦ 0.819 0.574 1.428 85 ◦ 0.996 0.087 11.430
26 ◦ 0.438 0.899 0.488 56 ◦ 0.829 0.559 1.483 86 ◦ 0.998 0.070 14.301
27 ◦ 0.454 0.891 0.510 57 ◦ 0.839 0.545 1.540 87 ◦ 0.999 0.052 19.081
28 ◦ 0.469 0.883 0.532 58 ◦ 0.848 0.530 1.600 88 ◦ 0.999 0.035 28.636
29 ◦ 0.485 0.875 0.554 59 ◦ 0.857 0.515 1.664 89 ◦ 1.000 0.017 57.290

90 ◦ 1.000 0.000 ∞
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Useful Data

Metric Prefixes

M- mega- 106

k- kilo- 103

m- milli- 10−3

µ- (Greek mu) micro- 10−6

n- nano- 10−9

p- pico- 10−12

f- femto- 10−15

(Centi-, 10−2, is used only in the centimeter.)

The Greek Alphabet

α A alpha ν N nu
β B beta ξ Ξ xi
γ Γ gamma o O omicron
δ ∆ delta π Π pi
ε E epsilon ρ P rho
ζ Z zeta σ Σ sigma
η H eta τ T tau
θ Θ theta υ Y upsilon
ι I iota φ Φ phi
κ K kappa χ X chi
λ Λ lambda ψ Ψ psi
µ M mu ω Ω omega

Fundamental Constants

gravitational constant G = 6.67 × 10−11 N·m2/kg2

speed of light c = 3.00 × 108 m/s

Subatomic Particles

particle mass (kg) radius (fm)
electron 9.109 × 10−31 . 0.01
proton 1.673 × 10−27 ∼ 1.1
neutron 1.675 × 10−27 ∼ 1.1

Notation and Units

quantity unit symbol
distance meter, m x, ∆x
time second, s t, ∆t
mass kilogram, kg m
density kg/m3 ρ
area m2 (square meters) A
volume m3 (cubic meters) V
velocity m/s v
acceleration m/s2 a
gravitational field J/kg·m or m/s2 g
force newton, 1 N=1 kg·m/s2 F

Conversions

Nonmetric units in terms of metric ones:

1 inch = 25.4 mm (by definition)
1 pound-force = 4.5 newtons of force
(1 kg) · g = 2.2 pounds-force
1 scientific calorie = 4.18 J
1 kcal = 4.18 × 103 J
1 gallon = 3.78 × 103 cm3

1 horsepower = 746 W

When speaking of food energy, the word “Calorie” is used

to mean 1 kcal, i.e., 1000 calories. In writing, the capital C

may be used to indicate 1 Calorie=1000 calories.

Earth, Moon, and Sun

body mass (kg) radius (km) radius of orbit (km)
earth 5.97 × 1024 6.4 × 103 1.49 × 108

moon 7.35 × 1022 1.7 × 103 3.84 × 105

sun 1.99 × 1030 7.0 × 105 —
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