

Vehicle Electrification System Standards

VI. Electric Transmissions and Drive Units

VI.b Overview of Electric Transmission, Transaxle, and Drive Units

Overview:

BEV Drive Units – with Gear Box

- Drive Unit Design
- Vehicle Applications
- All-Wheel Drive Systems
- Advantages & Disadvantages
- Description of Operation
- Servicing
- Diagnostics

Hybrid Transmissions – Planetary Gear Sets with Clutch System Design

- Transmission Unit Design
- Vehicle Applications
- All-Wheel Drive Systems
- Advantages & Disadvantages
- Description of Operation
 - Mechanical Systems
 - Hydraulic Systems
- Servicing
- Diagnostics

BEV Drive Units - without Gear Box

- Drive Unit Design
- Vehicle Applications
- All-Wheel Drive Systems
- Advantages & Disadvantages
- Description of Operation
- Servicing
- Diagnostics

Hybrid Transaxles – Planetary Gear Sets without Clutch System Design

- Transaxle Unit Design
- Vehicle Applications
- All-Wheel Drive Systems
- Advantages & Disadvantages
- Description of Operation
 - Mechanical Systems
 - Hydraulic Systems
- Servicing
- Diagnostics

Description:

Electric Drive Units, Transmissions and Transaxles transfer rotating electrical speed from the electric machine rotor to the drive axles and wheels through a system of gears that will multiply torque. These powertrain components can be designed for various applications and configurations to ensure a product delivers speed and torque, while maintaining high levels of efficiency and quality.

Outcome (Goal):

Students will be able to describe the differences between electric transmissions, transaxles, drive units, and eAxles and identify each configuration.

Objective:

Students shall be able to:

- 1. Identify component parts for each type of a powertrain transmission system
- 2. When provided a transmission, transaxle, or drive unit, the student will describe the operation and function of each operating mode (if applicable)
- 3. Describe the powerflow (speed and torque flow) of each powertrain transmission device when provided with a transmission gear and clutch diagram
- 4. Identify the mechanical and electrical powertrain transmission internal lubrication system
- 5. Calculate the gear ratio of the powertrain transmission and the differential gearing to acquire the final gear ratio
- 6. Describe the operation of a powertrain transmission when specific mechanical and/or hydraulic failure modes are presented
- 7. Operate a serial data (scan tool) to acquire data to ensure a transmission system is operating correctly
- 8. When provided an electric powertrain transmission, students will disassemble, and assemble the transmission

Task:

Students will be able to:

- 1. Identify powertrain transmission components when given a worksheet or diagram
- 2. Articulate (both verbal and written) powertrain transmission operating modes, and powerflow when given a transmission diagram
- 3. Describe the operation of a transmission powertrain, using powerflow diagrams, when the failure of specific internal components occur when provided hydraulic and mechanical diagrams
- 4. Complete the acquisition of transmission data during the road test of a vehicle to determine if the transmission data is within correct operating parameters
- 5. Correctly disassemble and assemble an electric powertrain transmission unit using proper tools, measuring devices, and procedures
- Use OEM vehicle service, component supplier information, and DOE/NREL/INL/ANL vehicle electrification website information to complete all tasks

To comment or offer suggestions on this standard, contact Ken Mays:

Ken Mays	NEVTEX
541-383-7753	kmays@cocc.edu

